BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36923506)

  • 1. Natural durability of timber species exposed to xylophagous fungi in southern Durango, Mexico.
    Ontiveros-Moreno Y; Colín-Urieta S; Corral-Rivas JJ; Hernández-Díaz JC; Prieto-Ruíz JÁ; Carrillo-Parra A
    PeerJ; 2023; 11():e14541. PubMed ID: 36923506
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biological method to quantify progressive stages of decay in five commercial woods by Coriolus versicolor.
    Olfat AM; Karimi AN; Parsapajouh D
    Pak J Biol Sci; 2007 Apr; 10(7):1073-7. PubMed ID: 19070053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation and saccharification of wood chips of Pinus strobus and Liriodendron tulipifera by white rot fungi.
    Hwang SS; Lee SJ; Kim HK; Ka JO; Kim KJ; Song HG
    J Microbiol Biotechnol; 2008 Nov; 18(11):1819-26. PubMed ID: 19047827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pre-treatment of Pinus radiata substrates by basidiomycetes fungi to enhance enzymatic hydrolysis.
    Vaidya A; Singh T
    Biotechnol Lett; 2012 Jul; 34(7):1263-7. PubMed ID: 22421971
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Host preference and species richness of wood-inhabiting aphyllophoraceous fungi in a cool temperate area of Japan.
    Yamashita S; Hattori T; Abe H
    Mycologia; 2010; 102(1):11-9. PubMed ID: 20120223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determination of fungal activity in modified wood by means of micro-calorimetry and determination of total esterase activity.
    Verma P; Dyckmans J; Militz H; Mai C
    Appl Microbiol Biotechnol; 2008 Aug; 80(1):125-33. PubMed ID: 18542949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. First Report of White Fir Dwarf Mistletoe (Arceuthobium abietinum f. sp. concoloris) on Durango Fir (Abies durangensis) from Durango, Mexico.
    Barraza SQ; Mathiasen R; Gonzalez-Elizondo S
    Plant Dis; 2013 Mar; 97(3):431. PubMed ID: 30722379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the Decay Resistance of Wood through the Fixation of Different Nanoparticles Using Silica Aerogel.
    Bak M; Plesér Z; Németh R
    Gels; 2024 Apr; 10(4):. PubMed ID: 38667674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological control of some wood-decay fungi with antagonistic fungi.
    Hınçal S; Yalçın M
    Biodegradation; 2023 Dec; 34(6):597-607. PubMed ID: 37436664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Durability of heat-treated Paulownia tomentosa and Pinus koraiensis woods in palm oil and air against brown- and white-rot fungi.
    Suri IF; Purusatama BD; Kim JH; Hidayat W; Hwang WJ; Iswanto AH; Park SY; Lee SH; Kim NH
    Sci Rep; 2023 Dec; 13(1):21929. PubMed ID: 38081973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First Report of Arceuthobium blumeri on Pinus ayacahuite and A. globosum subsp. globosum on P. durangensis from Sinaloa, Mexico.
    Quiñonez Barraza S; Mathiasen R
    Plant Dis; 2010 Mar; 94(3):377. PubMed ID: 30754224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A reverse chemical ecology approach to explore wood natural durability.
    Perrot T; Salzet G; Amusant N; Beauchene J; Gérardin P; Dumarçay S; Sormani R; Morel-Rouhier M; Gelhaye E
    Microb Biotechnol; 2020 Sep; 13(5):1673-1677. PubMed ID: 32212309
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolite secretion, Fe(3+)-reducing activity and wood degradation by the white-rot fungus Trametes versicolor ATCC 20869.
    Aguiar A; Gavioli D; Ferraz A
    Fungal Biol; 2014 Nov; 118(11):935-42. PubMed ID: 25442296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resistance of in natura and torrefied wood chips to xylophage fungi.
    Castro VR; de Castro Freitas MP; Zanuncio AJV; Zanuncio JC; Surdi PG; Carneiro ACO; Vital BR
    Sci Rep; 2019 Jul; 9(1):11068. PubMed ID: 31363114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification by gas chromatography-mass spectrometry of the volatile organic compounds emitted from the wood-rotting fungi Serpula lacrymans and Coniophora puteana, and from Pinus sylvestris timber.
    Ewen RJ; Jones PR; Ratcliffe NM; Spencer-Phillips PT
    Mycol Res; 2004 Jul; 108(Pt 7):806-14. PubMed ID: 15446714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinguishing the Signs of Fungal and Burial-Induced Degradation in Waterlogged Wood from Biskupin (Poland) by Scanning Electron Microscopy.
    Tamburini D; Cartwright CR; Cofta G; Zborowska M; Mamoňová M
    Microsc Microanal; 2018 Apr; 24(2):163-182. PubMed ID: 29607797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment and Models of Insect Damage to Cones and Seeds of
    Leal-Sáenz A; Waring KM; Álvarez-Zagoya R; Hernández-Díaz JC; López-Sánchez CA; Martínez-Guerrero JH; Wehenkel C
    Front Plant Sci; 2021; 12():628795. PubMed ID: 33995433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of odor from wood-decaying fungi on host selection behavior of deathwatch beetle, Xestobium rufovillosum.
    Belmain SR; Simmonds MS; Blaney WM
    J Chem Ecol; 2002 Apr; 28(4):741-54. PubMed ID: 12035923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gravimetric screening method for fungal decay of paper: inoculation with Trametes versicolor.
    Råberg U; Hafrén J
    Biotechnol Lett; 2009 Oct; 31(10):1519-24. PubMed ID: 19495565
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Utilizing pigment-producing fungi to add commercial value to American beech (Fagus grandifolia).
    Robinson SC; Tudor D; Cooper PA
    Appl Microbiol Biotechnol; 2012 Feb; 93(3):1041-8. PubMed ID: 21931972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.