These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36923826)

  • 1. Dynamics and hydrodynamic efficiency of diving beetle while swimming.
    Qi D; Zhang C; Wu Z; Shen C; Yue Y; Ren L; Yang L
    Heliyon; 2023 Mar; 9(3):e14200. PubMed ID: 36923826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation and analysis of diving beetle movements while swimming.
    Qi D; Zhang C; He J; Yue Y; Wang J; Xiao D
    Sci Rep; 2021 Aug; 11(1):16581. PubMed ID: 34400745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental studies and dynamics modeling analysis of the swimming and diving of whirligig beetles (Coleoptera: Gyrinidae).
    Xu Z; Lenaghan SC; Reese BE; Jia X; Zhang M
    PLoS Comput Biol; 2012; 8(11):e1002792. PubMed ID: 23209398
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Force scaling and efficiency of elongated median fin propulsion.
    Uddin MI; Garcia GA; Curet OM
    Bioinspir Biomim; 2022 May; 17(4):. PubMed ID: 35366647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propulsive efficiency of frog swimming with different feet and swimming patterns.
    Jizhuang F; Wei Z; Bowen Y; Gangfeng L
    Biol Open; 2017 Apr; 6(4):503-510. PubMed ID: 28302669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How do swimmers control their front crawl swimming velocity? Current knowledge and gaps from hydrodynamic perspectives.
    Takagi H; Nakashima M; Sengoku Y; Tsunokawa T; Koga D; Narita K; Kudo S; Sanders R; Gonjo T
    Sports Biomech; 2023 Dec; 22(12):1552-1571. PubMed ID: 34423742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of performance of various leg-kicking techniques in fin swimming in terms of achieving the different goals of underwater activities.
    Rejman M; Siemontowski P; Siemienski A
    PLoS One; 2020; 15(8):e0236504. PubMed ID: 32745109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical versus physiological determinants of swimming speeds in diving Brünnich's guillemots.
    Lovvorn JR; Croll DA; Liggins GA
    J Exp Biol; 1999 Jul; 202(Pt 13):1741-52. PubMed ID: 10359677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fish and chips: implementation of a neural network model into computer chips to maximize swimming efficiency in autonomous underwater vehicles.
    Blake RW; Ng H; Chan KH; Li J
    Bioinspir Biomim; 2008 Sep; 3(3):034002. PubMed ID: 18626130
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metachronal Swimming with Flexible Legs: A Kinematics Analysis of the Midwater Polychaete Tomopteris.
    Daniels J; Aoki N; Havassy J; Katija K; Osborn KJ
    Integr Comp Biol; 2021 Nov; 61(5):1658-1673. PubMed ID: 33956943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive analysis of efficient swimming using articulated legs fringed with flexible appendages inspired by a water beetle.
    Kwak B; Lee D; Bae J
    Bioinspir Biomim; 2019 Sep; 14(6):066003. PubMed ID: 31362269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ants swimming in pitcher plants: kinematics of aquatic and terrestrial locomotion in Camponotus schmitzi.
    Bohn HF; Thornham DG; Federle W
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Jun; 198(6):465-76. PubMed ID: 22526112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Analysis of Biomimetic Caudal Fin Propulsion Mechanism with CFD.
    Liu G; Liu S; Xie Y; Leng D; Li G
    Appl Bionics Biomech; 2020; 2020():7839049. PubMed ID: 32676127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of stroke pattern and swim speed across a range of current velocities: diving by common eiders wintering in polynyas in the Canadian Arctic.
    Heath JP; Gilchrist HG; Ydenberg RC
    J Exp Biol; 2006 Oct; 209(Pt 20):3974-83. PubMed ID: 17023591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lift-based paddling in diving grebe.
    Johansson LC; Lindhe Norberg UM
    J Exp Biol; 2001 May; 204(Pt 10):1687-96. PubMed ID: 11316488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Averaged Propulsive Body Acceleration (APBA) Can Be Calculated from Biologging Tags That Incorporate Gyroscopes and Accelerometers to Estimate Swimming Speed, Hydrodynamic Drag and Energy Expenditure for Steller Sea Lions.
    Ware C; Trites AW; Rosen DA; Potvin J
    PLoS One; 2016; 11(6):e0157326. PubMed ID: 27285467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delta-wing function of webbed feet gives hydrodynamic lift for swimming propulsion in birds.
    Johansson LC; Norberg RA
    Nature; 2003 Jul; 424(6944):65-8. PubMed ID: 12840759
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinematics and hydrodynamics analyses of swimming penguins: wing bending improves propulsion performance.
    Harada N; Oura T; Maeda M; Shen Y; Kikuchi DM; Tanaka H
    J Exp Biol; 2021 Nov; 224(21):. PubMed ID: 34553753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Foot-propelled swimming kinematics and turning strategies in common loons.
    Clifton GT; Biewener AA
    J Exp Biol; 2018 Oct; 221(Pt 19):. PubMed ID: 30127080
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination and propulsion and non-propulsion phases in 100 meter breaststroke swimming.
    Strzała M; Krężałek P; Kucia-Czyszczoń K; Ostrowski A; Stanula A; Tyka AK; Sagalara A
    Acta Bioeng Biomech; 2014; 16(4):83-9. PubMed ID: 25597307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.