These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 36924021)

  • 1. Predicting 3D structures and stabilities for complex RNA pseudoknots in ion solutions.
    Wang X; Tan YL; Yu S; Shi YZ; Tan ZJ
    Biophys J; 2023 Apr; 122(8):1503-1516. PubMed ID: 36924021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting 3D structure and stability of RNA pseudoknots in monovalent and divalent ion solutions.
    Shi YZ; Jin L; Feng CJ; Tan YL; Tan ZJ
    PLoS Comput Biol; 2018 Jun; 14(6):e1006222. PubMed ID: 29879103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the correlation between Xrn1-resistant RNAs and frameshifter pseudoknots.
    Dilweg IW; Oskam MG; Overbeek S; Olsthoorn RCL
    RNA Biol; 2023 Jan; 20(1):409-418. PubMed ID: 37400999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A coarse-grained model with implicit salt for RNAs: predicting 3D structure, stability and salt effect.
    Shi YZ; Wang FH; Wu YY; Tan ZJ
    J Chem Phys; 2014 Sep; 141(10):105102. PubMed ID: 25217954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure folding of RNA kissing complexes in salt solutions: predicting 3D structure, stability, and folding pathway.
    Jin L; Tan YL; Wu Y; Wang X; Shi YZ; Tan ZJ
    RNA; 2019 Nov; 25(11):1532-1548. PubMed ID: 31391217
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monovalent ions modulate the flux through multiple folding pathways of an RNA pseudoknot.
    Roca J; Hori N; Baral S; Velmurugu Y; Narayanan R; Narayanan P; Thirumalai D; Ansari A
    Proc Natl Acad Sci U S A; 2018 Jul; 115(31):E7313-E7322. PubMed ID: 30012621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting 3D Structure, Flexibility, and Stability of RNA Hairpins in Monovalent and Divalent Ion Solutions.
    Shi YZ; Jin L; Wang FH; Zhu XL; Tan ZJ
    Biophys J; 2015 Dec; 109(12):2654-2665. PubMed ID: 26682822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modelling the structures of frameshift-stimulatory pseudoknots from representative bat coronaviruses.
    Sekar RV; Oliva PJ; Woodside MT
    PLoS Comput Biol; 2023 May; 19(5):e1011124. PubMed ID: 37205708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the mechanical unfolding of RNA pseudoknots.
    Green L; Kim CH; Bustamante C; Tinoco I
    J Mol Biol; 2008 Jan; 375(2):511-28. PubMed ID: 18021801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A characteristic bent conformation of RNA pseudoknots promotes -1 frameshifting during translation of retroviral RNA.
    Chen X; Kang H; Shen LX; Chamorro M; Varmus HE; Tinoco I
    J Mol Biol; 1996 Jul; 260(4):479-83. PubMed ID: 8759314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling Structure, Stability, and Flexibility of Double-Stranded RNAs in Salt Solutions.
    Jin L; Shi YZ; Feng CJ; Tan YL; Tan ZJ
    Biophys J; 2018 Oct; 115(8):1403-1416. PubMed ID: 30236782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-altering mutations of the SARS-CoV-2 frameshifting RNA element.
    Schlick T; Zhu Q; Jain S; Yan S
    Biophys J; 2021 Mar; 120(6):1040-1053. PubMed ID: 33096082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting structures and stabilities for H-type pseudoknots with interhelix loops.
    Cao S; Chen SJ
    RNA; 2009 Apr; 15(4):696-706. PubMed ID: 19237463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shapify: Paths to SARS-CoV-2 frameshifting pseudoknot.
    Trinity L; Wark I; Lansing L; Jabbari H; Stege U
    PLoS Comput Biol; 2023 Feb; 19(2):e1010922. PubMed ID: 36854032
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An iterated loop matching approach to the prediction of RNA secondary structures with pseudoknots.
    Ruan J; Stormo GD; Zhang W
    Bioinformatics; 2004 Jan; 20(1):58-66. PubMed ID: 14693809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assembly mechanisms of RNA pseudoknots are determined by the stabilities of constituent secondary structures.
    Cho SS; Pincus DL; Thirumalai D
    Proc Natl Acad Sci U S A; 2009 Oct; 106(41):17349-54. PubMed ID: 19805055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elaborated pseudoknots that stimulate -1 programmed ribosomal frameshifting or stop codon readthrough in RNA viruses.
    Huang X; Du Z
    J Biomol Struct Dyn; 2023 Dec; ():1-13. PubMed ID: 38095458
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlation between mechanical strength of messenger RNA pseudoknots and ribosomal frameshifting.
    Hansen TM; Reihani SN; Oddershede LB; Sørensen MA
    Proc Natl Acad Sci U S A; 2007 Apr; 104(14):5830-5. PubMed ID: 17389398
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Possible involvement of coaxially stacked double pseudoknots in the regulation of -1 programmed ribosomal frameshifting in RNA viruses.
    Wang G; Yang Y; Huang X; Du Z
    J Biomol Struct Dyn; 2015; 33(7):1547-57. PubMed ID: 25204560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA-As-Graphs Motif Atlas-Dual Graph Library of RNA Modules and Viral Frameshifting-Element Applications.
    Zhu Q; Petingi L; Schlick T
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.