BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 3692483)

  • 1. Origin of the human L1 elements: proposed progenitor genes deduced from a consensus DNA sequence.
    Scott AF; Schmeckpeper BJ; Abdelrazik M; Comey CT; O'Hara B; Rossiter JP; Cooley T; Heath P; Smith KD; Margolet L
    Genomics; 1987 Oct; 1(2):113-25. PubMed ID: 3692483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete nucleotide sequence of the rabbit beta-like globin gene cluster. Analysis of intergenic sequences and comparison with the human beta-like globin gene cluster.
    Margot JB; Demers GW; Hardison RC
    J Mol Biol; 1989 Jan; 205(1):15-40. PubMed ID: 2486295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The L1 family of long interspersed repetitive DNA in rabbits: sequence, copy number, conserved open reading frames, and similarity to keratin.
    Demers GW; Matunis MJ; Hardison RC
    J Mol Evol; 1989 Jul; 29(1):3-19. PubMed ID: 2475641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence and comparative analysis of the rabbit alpha-like globin gene cluster reveals a rapid mode of evolution in a G + C-rich region of mammalian genomes.
    Hardison R; Krane D; Vandenbergh D; Cheng JF; Mansberger J; Taddie J; Schwartz S; Huang XQ; Miller W
    J Mol Biol; 1991 Nov; 222(2):233-49. PubMed ID: 1960725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man.
    Kazazian HH; Wong C; Youssoufian H; Scott AF; Phillips DG; Antonarakis SE
    Nature; 1988 Mar; 332(6160):164-6. PubMed ID: 2831458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conservation throughout mammalia and extensive protein-encoding capacity of the highly repeated DNA long interspersed sequence one.
    Burton FH; Loeb DD; Voliva CF; Martin SL; Edgell MH; Hutchison CA
    J Mol Biol; 1986 Jan; 187(2):291-304. PubMed ID: 3009828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. L1 family of repetitive DNA sequences in primates may be derived from a sequence encoding a reverse transcriptase-related protein.
    Hattori M; Kuhara S; Takenaka O; Sakaki Y
    Nature; 1986 Jun 5-11; 321(6070):625-8. PubMed ID: 2423883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long interspersed L1 repeats in rabbit DNA are homologous to L1 repeats of rodents and primates in an open-reading-frame region.
    Demers GW; Brech K; Hardison RC
    Mol Biol Evol; 1986 May; 3(3):179-90. PubMed ID: 3444399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. L1 repeat elements in the human epsilon-G gamma-globin gene intergenic region: sequence analysis and concerted evolution within this family.
    Rogan PK; Pan J; Weissman SM
    Mol Biol Evol; 1987 Jul; 4(4):327-42. PubMed ID: 2833673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The beta globin gene cluster of the prosimian primate Galago crassicaudatus: nucleotide sequence determination of the 41-kb cluster and comparative sequence analyses.
    Tagle DA; Stanhope MJ; Siemieniak DR; Benson P; Goodman M; Slightom JL
    Genomics; 1992 Jul; 13(3):741-60. PubMed ID: 1639402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rhs elements of Escherichia coli K-12: complex composites of shared and unique components that have different evolutionary histories.
    Zhao S; Sandt CH; Feulner G; Vlazny DA; Gray JA; Hill CW
    J Bacteriol; 1993 May; 175(10):2799-808. PubMed ID: 8387990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of long sequence alignments to study the evolution and regulation of mammalian globin gene clusters.
    Hardison R; Miller W
    Mol Biol Evol; 1993 Jan; 10(1):73-102. PubMed ID: 8383794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. L1 A-monomer tandem arrays have expanded during the course of mouse L1 evolution.
    Schichman SA; Adey NB; Edgell MH; Hutchison CA
    Mol Biol Evol; 1993 May; 10(3):552-70. PubMed ID: 8336543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ancestral, mammalian-wide subfamilies of LINE-1 repetitive sequences.
    Smit AF; Tóth G; Riggs AD; Jurka J
    J Mol Biol; 1995 Feb; 246(3):401-417. PubMed ID: 7877164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subfamily structure and evolution of the human L1 family of repetitive sequences.
    Jurka J
    J Mol Evol; 1989 Dec; 29(6):496-503. PubMed ID: 2515296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Organization of the leading region of IncN plasmid pKM101 (R46): a regulation controlled by CUP sequence elements.
    Delver EP; Belogurov AA
    J Mol Biol; 1997 Aug; 271(1):13-30. PubMed ID: 9300052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a nondeleterious L1 insertion in an intron of the human factor VIII gene and further evidence of open reading frames in functional L1 elements.
    Woods-Samuels P; Wong C; Mathias SL; Scott AF; Kazazian HH; Antonarakis SE
    Genomics; 1989 Apr; 4(3):290-6. PubMed ID: 2497061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular evolution of intergenic DNA in higher primates: pattern of DNA changes, molecular clock, and evolution of repetitive sequences.
    Maeda N; Wu CI; Bliska J; Reneke J
    Mol Biol Evol; 1988 Jan; 5(1):1-20. PubMed ID: 3357413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tumorigenic poxviruses: genomic organization and DNA sequence of the telomeric region of the Shope fibroma virus genome.
    Upton C; DeLange AM; McFadden G
    Virology; 1987 Sep; 160(1):20-30. PubMed ID: 2820128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The sequence of a large L1Md element reveals a tandemly repeated 5' end and several features found in retrotransposons.
    Loeb DD; Padgett RW; Hardies SC; Shehee WR; Comer MB; Edgell MH; Hutchison CA
    Mol Cell Biol; 1986 Jan; 6(1):168-82. PubMed ID: 3023821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.