These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 36924877)
1. Heme protein identified from scaly-foot gastropod can synthesize pyrite (FeS Yamashita T; Matsuda H; Koizumi K; Thirumalaisamy L; Kim M; Negishi L; Kurumizaka H; Tominaga Y; Takagi Y; Takai K; Okumura T; Katayama H; Horitani M; Ahsan N; Okada Y; Nagata K; Suzuki Y; Suzuki M Acta Biomater; 2023 May; 162():110-119. PubMed ID: 36924877 [TBL] [Abstract][Full Text] [Related]
2. The making of natural iron sulfide nanoparticles in a hot vent snail. Okada S; Chen C; Watsuji TO; Nishizawa M; Suzuki Y; Sano Y; Bissessur D; Deguchi S; Takai K Proc Natl Acad Sci U S A; 2019 Oct; 116(41):20376-20381. PubMed ID: 31551263 [TBL] [Abstract][Full Text] [Related]
3. The heart of a dragon: 3D anatomical reconstruction of the 'scaly-foot gastropod' (Mollusca: Gastropoda: Neomphalina) reveals its extraordinary circulatory system. Chen C; Copley JT; Linse K; Rogers AD; Sigwart JD Front Zool; 2015; 12():13. PubMed ID: 26085836 [TBL] [Abstract][Full Text] [Related]
4. Production of carbon-containing pyrite spherules induced by hyperthermophilic Thermococcales: a biosignature? Truong C; Bernard S; Le Pape P; Morin G; Baya C; Merrot P; Gorlas A; Guyot F Front Microbiol; 2023; 14():1145781. PubMed ID: 37303784 [TBL] [Abstract][Full Text] [Related]
5. Precipitation of greigite and pyrite induced by Thermococcales: an advantage to live in Fe- and S-rich environments? Gorlas A; Mariotte T; Morey L; Truong C; Bernard S; Guigner JM; Oberto J; Baudin F; Landrot G; Baya C; Le Pape P; Morin G; Forterre P; Guyot F Environ Microbiol; 2022 Feb; 24(2):626-642. PubMed ID: 35102700 [TBL] [Abstract][Full Text] [Related]
6. Examining Pathways of Iron and Sulfur Acquisition, Trafficking, Deployment, and Storage in Mineral-Grown Methanogen Cells. Payne D; Shepard EM; Spietz RL; Steward K; Brumfield S; Young M; Bothner B; Broderick WE; Broderick JB; Boyd ES J Bacteriol; 2021 Sep; 203(19):e0014621. PubMed ID: 34251867 [TBL] [Abstract][Full Text] [Related]
7. Comparative Oxygen Consumption of Gastropod Holobionts from Deep-Sea Hydrothermal Vents in the Indian Ocean. Sigwart JD; Chen C Biol Bull; 2018 Oct; 235(2):102-112. PubMed ID: 30358445 [TBL] [Abstract][Full Text] [Related]
8. Nontoxic pyrite iron sulfide nanocrystals as second electron acceptor in PTB7:PC Amargós-Reyes O; Maldonado JL; Martínez-Alvarez O; Nicho ME; Santos-Cruz J; Nicasio-Collazo J; Caballero-Quintana I; Arenas-Arrocena C Beilstein J Nanotechnol; 2019; 10():2238-2250. PubMed ID: 31807409 [TBL] [Abstract][Full Text] [Related]
9. Controlled colloidal synthesis of iron pyrite FeS2 nanorods and quasi-cubic nanocrystal agglomerates. Zhu L; Richardson BJ; Yu Q Nanoscale; 2014 Jan; 6(2):1029-37. PubMed ID: 24292332 [TBL] [Abstract][Full Text] [Related]
10. Phase-pure iron pyrite nanocrystals for low-cost photodetectors. Liu S; Wu J; Yu P; Ding Q; Zhou Z; Li H; Lai CC; Chueh YL; Wang ZM Nanoscale Res Lett; 2014; 9(1):549. PubMed ID: 25317102 [TBL] [Abstract][Full Text] [Related]
11. High-purity iron pyrite (FeS2) nanowires as high-capacity nanostructured cathodes for lithium-ion batteries. Li L; Cabán-Acevedo M; Girard SN; Jin S Nanoscale; 2014 Feb; 6(4):2112-8. PubMed ID: 24441761 [TBL] [Abstract][Full Text] [Related]
12. Discovery of new hydrothermal activity and chemosynthetic fauna on the Central Indian Ridge at 18°-20° S. Nakamura K; Watanabe H; Miyazaki J; Takai K; Kawagucci S; Noguchi T; Nemoto S; Watsuji TO; Matsuzaki T; Shibuya T; Okamura K; Mochizuki M; Orihashi Y; Ura T; Asada A; Marie D; Koonjul M; Singh M; Beedessee G; Bhikajee M; Tamaki K PLoS One; 2012; 7(3):e32965. PubMed ID: 22431990 [TBL] [Abstract][Full Text] [Related]
13. High responsivity photoconductors based on iron pyrite nanowires using sulfurization of anodized iron oxide nanotubes. Wu J; Liu L; Liu S; Yu P; Zheng Z; Shafa M; Zhou Z; Li H; Ji H; Wang ZM Nano Lett; 2014 Oct; 14(10):6002-9. PubMed ID: 25233036 [TBL] [Abstract][Full Text] [Related]
14. Air stable, photosensitive, phase pure iron pyrite nanocrystal thin films for photovoltaic application. Bi Y; Yuan Y; Exstrom CL; Darveau SA; Huang J Nano Lett; 2011 Nov; 11(11):4953-7. PubMed ID: 21992489 [TBL] [Abstract][Full Text] [Related]
15. Iron and sulfide nanoparticle formation and transport in nascent hydrothermal vent plumes. Findlay AJ; Estes ER; Gartman A; Yücel M; Kamyshny A; Luther GW Nat Commun; 2019 Apr; 10(1):1597. PubMed ID: 30962453 [TBL] [Abstract][Full Text] [Related]
16. By more ways than one: Rapid convergence at hydrothermal vents shown by 3D anatomical reconstruction of Gigantopelta (Mollusca: Neomphalina). Chen C; Uematsu K; Linse K; Sigwart JD BMC Evol Biol; 2017 Mar; 17(1):62. PubMed ID: 28249568 [TBL] [Abstract][Full Text] [Related]
17. Reductive biomining of pyrite by methanogens. Spietz RL; Payne D; Szilagyi R; Boyd ES Trends Microbiol; 2022 Nov; 30(11):1072-1083. PubMed ID: 35624031 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and properties of semiconducting iron pyrite (FeS2) nanowires. Cabán-Acevedo M; Faber MS; Tan Y; Hamers RJ; Jin S Nano Lett; 2012 Apr; 12(4):1977-82. PubMed ID: 22429182 [TBL] [Abstract][Full Text] [Related]
19. Characterization of the Nano-Rod Arrays of Pyrite Thin Films Prepared by Aqueous Chemical Growth and a Subsequent Sulfurization. Talaeizadeh M; Seyyed Ebrahimi SA; Khosravi P; Hamawandi B Materials (Basel); 2022 Oct; 15(19):. PubMed ID: 36234287 [TBL] [Abstract][Full Text] [Related]
20. A Novel Fabrication of Hematite Nanoparticles via Recycling of Titanium Slag by Pyrite Reduction Technology. Ren G; Deng Y; Yang X Nanomaterials (Basel); 2024 Aug; 14(16):. PubMed ID: 39195368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]