BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36925613)

  • 1. Overview of mechanism and consequences of endothelial leakiness caused by metal and polymeric nanoparticles.
    Lasak M; Ciepluch K
    Beilstein J Nanotechnol; 2023; 14():329-338. PubMed ID: 36925613
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold Nanoparticles Induced Endothelial Leakiness Depends on Particle Size and Endothelial Cell Origin.
    Setyawati MI; Tay CY; Bay BH; Leong DT
    ACS Nano; 2017 May; 11(5):5020-5030. PubMed ID: 28422481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-induced endothelial leakiness-reversing nanoparticles for targeting, penetration and restoration of endothelial cell barrier.
    Huang Y; Huang B; Ye D; Luo X; Xiong X; Xiong H; Wang H; Zou Q; Liang J; Wang S; Wu L
    Acta Biomater; 2024 Feb; 175():226-239. PubMed ID: 38159897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiopoietin-1 accelerates restoration of endothelial cell barrier integrity from nanoparticle-induced leakiness.
    Tee JK; Setyawati MI; Peng F; Leong DT; Ho HK
    Nanotoxicology; 2019 Jun; 13(5):682-700. PubMed ID: 30776942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Engineering tumoral vascular leakiness with gold nanoparticles.
    Setyawati MI; Wang Q; Ni N; Tee JK; Ariga K; Ke PC; Ho HK; Wang Y; Leong DT
    Nat Commun; 2023 Jul; 14(1):4269. PubMed ID: 37460554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticles' interactions with vasculature in diseases.
    Tee JK; Yip LX; Tan ES; Santitewagun S; Prasath A; Ke PC; Ho HK; Leong DT
    Chem Soc Rev; 2019 Oct; 48(21):5381-5407. PubMed ID: 31495856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stealthy nanoparticles protect endothelial barrier from leakiness by resisting the absorption of VE-cadherin.
    Huang Y; Wang S; Zhang J; Wang H; Zou Q; Wu L
    Nanoscale; 2021 Aug; 13(29):12577-12586. PubMed ID: 34259298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness.
    Peng F; Setyawati MI; Tee JK; Ding X; Wang J; Nga ME; Ho HK; Leong DT
    Nat Nanotechnol; 2019 Mar; 14(3):279-286. PubMed ID: 30692675
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticle Density: A Critical Biophysical Regulator of Endothelial Permeability.
    Tay CY; Setyawati MI; Leong DT
    ACS Nano; 2017 Mar; 11(3):2764-2772. PubMed ID: 28287706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controlling nanoparticle-induced endothelial leakiness with the protein corona.
    Nandakumar A; Tang H; Andrikopoulos N; Quinn JF; Ding F; Ke PC; Li Y
    Nanoscale; 2024 May; 16(19):9348-9360. PubMed ID: 38651870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Framework of Paracellular Transport via Nanoparticles-Induced Endothelial Leakiness.
    Lee M; Ni N; Tang H; Li Y; Wei W; Kakinen A; Wan X; Davis TP; Song Y; Leong DT; Ding F; Ke PC
    Adv Sci (Weinh); 2021 Nov; 8(21):e2102519. PubMed ID: 34495564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quinic Acid-Conjugated Nanoparticles Enhance Drug Delivery to Solid Tumors via Interactions with Endothelial Selectins.
    Xu J; Lee SS; Seo H; Pang L; Jun Y; Zhang RY; Zhang ZY; Kim P; Lee W; Kron SJ; Yeo Y
    Small; 2018 Dec; 14(50):e1803601. PubMed ID: 30411856
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold Nanoparticles Increase Endothelial Paracellular Permeability by Altering Components of Endothelial Tight Junctions, and Increase Blood-Brain Barrier Permeability in Mice.
    Li CH; Shyu MK; Jhan C; Cheng YW; Tsai CH; Liu CW; Lee CC; Chen RM; Kang JJ
    Toxicol Sci; 2015 Nov; 148(1):192-203. PubMed ID: 26272951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inducible endothelial leakiness in nanotherapeutic applications.
    Ni N; Wang W; Sun Y; Sun X; Leong DT
    Biomaterials; 2022 Aug; 287():121640. PubMed ID: 35772348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Extracellular Polymeric Substances in the Toxicity Response of Anaerobic Granule Sludge to Different Metal Oxide Nanoparticles.
    Li H; Chang F; Li Z; Cui F
    Int J Environ Res Public Health; 2022 Apr; 19(9):. PubMed ID: 35564766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toxicity of metal-based nanoparticles: Challenges in the nano era.
    Zhang N; Xiong G; Liu Z
    Front Bioeng Biotechnol; 2022; 10():1001572. PubMed ID: 36619393
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface engineering of inorganic nanoparticles for imaging and therapy.
    Nam J; Won N; Bang J; Jin H; Park J; Jung S; Jung S; Park Y; Kim S
    Adv Drug Deliv Rev; 2013 May; 65(5):622-48. PubMed ID: 22975010
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of human umbilical vein endothelial cells (HUVECs) as an in vitro model to assess the toxicity of nanoparticles to endothelium: a review.
    Cao Y; Gong Y; Liu L; Zhou Y; Fang X; Zhang C; Li Y; Li J
    J Appl Toxicol; 2017 Dec; 37(12):1359-1369. PubMed ID: 28383141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Marginative Delivery-Mediated Extracellular Leakiness and T Cell Infiltration in Lung Metastasis by a Biomimetic Nanoraspberry.
    Shen WT; Hsu RS; Fang JH; Hu PF; Chiang CS; Hu SH
    Nano Lett; 2021 Feb; 21(3):1375-1383. PubMed ID: 33562964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactive Oxygen Species Formed by Metal and Metal Oxide Nanoparticles in Physiological Media-A Review of Reactions of Importance to Nanotoxicity and Proposal for Categorization.
    Kessler A; Hedberg J; Blomberg E; Odnevall I
    Nanomaterials (Basel); 2022 Jun; 12(11):. PubMed ID: 35683777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.