These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 36925620)

  • 1. Small training dataset convolutional neural networks for application-specific super-resolution microscopy.
    Mannam V; Howard S
    J Biomed Opt; 2023 Mar; 28(3):036501. PubMed ID: 36925620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of convolutional neural networks towards nuclei segmentation in localization-based super-resolution fluorescence microscopy images.
    Mela CA; Liu Y
    BMC Bioinformatics; 2021 Jun; 22(1):325. PubMed ID: 34130628
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SGSR: style-subnets-assisted generative latent bank for large-factor super-resolution with registered medical image dataset.
    Zheng T; Oda H; Hayashi Y; Nakamura S; Mori M; Takabatake H; Natori H; Oda M; Mori K
    Int J Comput Assist Radiol Surg; 2024 Mar; 19(3):493-506. PubMed ID: 38129364
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A hybrid convolutional neural network for super-resolution reconstruction of MR images.
    Zheng Y; Zhen B; Chen A; Qi F; Hao X; Qiu B
    Med Phys; 2020 Jul; 47(7):3013-3022. PubMed ID: 32201956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional self super-resolution for pelvic floor MRI using a convolutional neural network with multi-orientation data training.
    Feng F; Ashton-Miller JA; DeLancey JOL; Luo J
    Med Phys; 2022 Feb; 49(2):1083-1096. PubMed ID: 34967014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of Swin Transformer and knowledge transfer for denoising of super-resolution structured illumination microscopy data.
    Shah ZH; Müller M; Hübner W; Wang TC; Telman D; Huser T; Schenck W
    Gigascience; 2024 Jan; 13():. PubMed ID: 38217407
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI super-resolution using similarity distance and multi-scale receptive field based feature fusion GAN and pre-trained slice interpolation network.
    U N; P M A
    Magn Reson Imaging; 2024 Jul; 110():195-209. PubMed ID: 38653336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Arbitrary Scale Super-Resolution Approach for 3D MR Images via Implicit Neural Representation.
    Wu Q; Li Y; Sun Y; Zhou Y; Wei H; Yu J; Zhang Y
    IEEE J Biomed Health Inform; 2023 Feb; 27(2):1004-1015. PubMed ID: 37022393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model.
    Chun J; Zhang H; Gach HM; Olberg S; Mazur T; Green O; Kim T; Kim H; Kim JS; Mutic S; Park JC
    Med Phys; 2019 Sep; 46(9):4148-4164. PubMed ID: 31309585
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving fluorescence lifetime imaging microscopy phasor accuracy using convolutional neural networks.
    Mannam V; P Brandt J; Smith CJ; Yuan X; Howard S
    Front Bioinform; 2023; 3():1335413. PubMed ID: 38187910
    [No Abstract]   [Full Text] [Related]  

  • 11. Deep learning in computed tomography super resolution using multi-modality data training.
    Fok WYR; Fieselmann A; Herbst M; Ritschl L; Kappler S; Saalfeld S
    Med Phys; 2024 Apr; 51(4):2846-2860. PubMed ID: 37972365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new deep convolutional neural network design with efficient learning capability: Application to CT image synthesis from MRI.
    Bahrami A; Karimian A; Fatemizadeh E; Arabi H; Zaidi H
    Med Phys; 2020 Oct; 47(10):5158-5171. PubMed ID: 32730661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Super-resolution recurrent convolutional neural networks for learning with multi-resolution whole slide images.
    Mukherjee L; Bui HD; Keikhosravi A; Loeffler A; Eliceiri K
    J Biomed Opt; 2019 Dec; 24(12):1-15. PubMed ID: 31837128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X; Liang X; Deng L; Tan S; Xie Y
    Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A data augmentation approach to train fully convolutional networks for left ventricle segmentation.
    Lin A; Wu J; Yang X
    Magn Reson Imaging; 2020 Feb; 66():152-164. PubMed ID: 31476360
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Super resolution for root imaging.
    Ruiz-Munoz JF; Nimmagadda JK; Dowd TG; Baciak JE; Zare A
    Appl Plant Sci; 2020 Jul; 8(7):e11374. PubMed ID: 32765973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-based convolutional neural network for intramodality brain MRI synthesis.
    Osman AFI; Tamam NM
    J Appl Clin Med Phys; 2022 Apr; 23(4):e13530. PubMed ID: 35044073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. End-to-end memory-efficient reconstruction for cone beam CT.
    Moriakov N; Sonke JJ; Teuwen J
    Med Phys; 2023 Dec; 50(12):7579-7593. PubMed ID: 37846969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved automatic detection of herpesvirus secondary envelopment stages in electron microscopy by augmenting training data with synthetic labelled images generated by a generative adversarial network.
    Shaga Devan K; Walther P; von Einem J; Ropinski T; A Kestler H; Read C
    Cell Microbiol; 2021 Feb; 23(2):e13280. PubMed ID: 33073426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel hybrid generative adversarial network for CT and MRI super-resolution reconstruction.
    Xiao Y; Chen C; Wang L; Yu J; Fu X; Zou Y; Lin Z; Wang K
    Phys Med Biol; 2023 Jun; 68(13):. PubMed ID: 37285848
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.