These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 36925620)

  • 41. A novel end-to-end classifier using domain transferred deep convolutional neural networks for biomedical images.
    Pang S; Yu Z; Orgun MA
    Comput Methods Programs Biomed; 2017 Mar; 140():283-293. PubMed ID: 28254085
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Super-Resolution Ultrasound Imaging Scheme Based on a Symmetric Series Convolutional Neural Network.
    Tamang LD; Kim BW
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35459061
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tumor Segmentation in Intraoperative Fluorescence Images Based on Transfer Learning and Convolutional Neural Networks.
    Hou W; Zou L; Wang D
    Surg Innov; 2024 Jun; 31(3):291-306. PubMed ID: 38619039
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Super-resolution reconstruction of MR image with a novel residual learning network algorithm.
    Shi J; Liu Q; Wang C; Zhang Q; Ying S; Xu H
    Phys Med Biol; 2018 Apr; 63(8):085011. PubMed ID: 29583134
    [TBL] [Abstract][Full Text] [Related]  

  • 45. PET image super-resolution using generative adversarial networks.
    Song TA; Chowdhury SR; Yang F; Dutta J
    Neural Netw; 2020 May; 125():83-91. PubMed ID: 32078963
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A trusted medical image super-resolution method based on feedback adaptive weighted dense network.
    Chen L; Yang X; Jeon G; Anisetti M; Liu K
    Artif Intell Med; 2020 Jun; 106():101857. PubMed ID: 32593391
    [TBL] [Abstract][Full Text] [Related]  

  • 47. FNSAM: Image super-resolution using a feedback network with self-attention mechanism.
    Huang Y; Wang W; Li M
    Technol Health Care; 2023; 31(S1):383-395. PubMed ID: 37066938
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Bi-channel image registration and deep-learning segmentation (BIRDS) for efficient, versatile 3D mapping of mouse brain.
    Wang X; Zeng W; Yang X; Zhang Y; Fang C; Zeng S; Han Y; Fei P
    Elife; 2021 Jan; 10():. PubMed ID: 33459255
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Brain tumor segmentation using holistically nested neural networks in MRI images.
    Zhuge Y; Krauze AV; Ning H; Cheng JY; Arora BC; Camphausen K; Miller RW
    Med Phys; 2017 Oct; 44(10):5234-5243. PubMed ID: 28736864
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Super-resolution construction of intravascular ultrasound images using generative adversarial networks].
    Wu Y; Yang F; Huang J; Liu Y
    Nan Fang Yi Ke Da Xue Xue Bao; 2019 Jan; 39(1):82-87. PubMed ID: 30692071
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Generative Adversarial Network technique for high-quality super-resolution reconstruction of cardiac magnetic resonance images.
    Zhao M; Wei Y; Wong KKL
    Magn Reson Imaging; 2022 Jan; 85():153-160. PubMed ID: 34699953
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Leukocyte super-resolution via geometry prior and structural consistency.
    Hua X; Cai Y; Zhou Y; Yan F; Cao X
    J Biomed Opt; 2020 Oct; 25(10):. PubMed ID: 33021088
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dual U-Net residual networks for cardiac magnetic resonance images super-resolution.
    Qiu D; Cheng Y; Wang X
    Comput Methods Programs Biomed; 2022 May; 218():106707. PubMed ID: 35255374
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Deep supervised dictionary learning by algorithm unrolling-Application to fast 2D dynamic MR image reconstruction.
    Kofler A; Pali MC; Schaeffter T; Kolbitsch C
    Med Phys; 2023 May; 50(5):2939-2960. PubMed ID: 36565150
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images.
    Kim B; Han M; Shim H; Baek J
    Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A 3D Convolutional Neural Network with Gradient Guidance for Image Super-Resolution of Late Gadolinium Enhanced Cardiac MRI.
    Upendra RR; Linte CA
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1707-1710. PubMed ID: 36086376
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Improving convolutional neural network learning based on a hierarchical bezier generative model for stenosis detection in X-ray images.
    Ovalle-Magallanes E; Avina-Cervantes JG; Cruz-Aceves I; Ruiz-Pinales J
    Comput Methods Programs Biomed; 2022 Jun; 219():106767. PubMed ID: 35364481
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Fluorescence microscopy datasets for training deep neural networks.
    Hagen GM; Bendesky J; Machado R; Nguyen TA; Kumar T; Ventura J
    Gigascience; 2021 May; 10(5):. PubMed ID: 33954794
    [TBL] [Abstract][Full Text] [Related]  

  • 59. SpeckleGAN: a generative adversarial network with an adaptive speckle layer to augment limited training data for ultrasound image processing.
    Bargsten L; Schlaefer A
    Int J Comput Assist Radiol Surg; 2020 Sep; 15(9):1427-1436. PubMed ID: 32556953
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Transformer-Based Model for Super-Resolution of Anime Image.
    Xu S; Dutta V; He X; Matsumaru T
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365830
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.