BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 36925687)

  • 1. Phage engineering and phage-assisted CRISPR-Cas delivery to combat multidrug-resistant pathogens.
    Khambhati K; Bhattacharjee G; Gohil N; Dhanoa GK; Sagona AP; Mani I; Bui NL; Chu DT; Karapurkar JK; Jang SH; Chung HY; Maurya R; Alzahrani KJ; Ramakrishna S; Singh V
    Bioeng Transl Med; 2023 Mar; 8(2):e10381. PubMed ID: 36925687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The current status of phage therapy and its advancement towards establishing standard antimicrobials for combating multi drug-resistant bacterial pathogens.
    Ali Y; Inusa I; Sanghvi G; Mandaliya VB; Bishoyi AK
    Microb Pathog; 2023 Aug; 181():106199. PubMed ID: 37336428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacteriophage genome engineering for phage therapy to combat bacterial antimicrobial resistance as an alternative to antibiotics.
    Usman SS; Uba AI; Christina E
    Mol Biol Rep; 2023 Aug; 50(8):7055-7067. PubMed ID: 37392288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phage-delivered sensitisation with subsequent antibiotic treatment reveals sustained effect against antimicrobial resistant bacteria.
    Liu H; Li H; Liang Y; Du X; Yang C; Yang L; Xie J; Zhao R; Tong Y; Qiu S; Song H
    Theranostics; 2020; 10(14):6310-6321. PubMed ID: 32483454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variability in the durability of CRISPR-Cas immunity.
    Chabas H; Nicot A; Meaden S; Westra ER; Tremblay DM; Pradier L; Lion S; Moineau S; Gandon S
    Philos Trans R Soc Lond B Biol Sci; 2019 May; 374(1772):20180097. PubMed ID: 30905283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria.
    Yosef I; Manor M; Kiro R; Qimron U
    Proc Natl Acad Sci U S A; 2015 Jun; 112(23):7267-72. PubMed ID: 26060300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approaches for bacteriophage genome engineering.
    Mahler M; Costa AR; van Beljouw SPB; Fineran PC; Brouns SJJ
    Trends Biotechnol; 2023 May; 41(5):669-685. PubMed ID: 36117025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary Dynamics between Phages and Bacteria as a Possible Approach for Designing Effective Phage Therapies against Antibiotic-Resistant Bacteria.
    Hasan M; Ahn J
    Antibiotics (Basel); 2022 Jul; 11(7):. PubMed ID: 35884169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 10. Delivery of CRISPR-Cas systems using phage-based vectors.
    Fage C; Lemire N; Moineau S
    Curr Opin Biotechnol; 2021 Apr; 68():174-180. PubMed ID: 33360715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic engineering of a temperate phage-based delivery system for CRISPR/Cas9 antimicrobials against Staphylococcus aureus.
    Park JY; Moon BY; Park JW; Thornton JA; Park YH; Seo KS
    Sci Rep; 2017 Mar; 7():44929. PubMed ID: 28322317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harnessing the CRISPR-Cas Systems to Combat Antimicrobial Resistance.
    Duan C; Cao H; Zhang LH; Xu Z
    Front Microbiol; 2021; 12():716064. PubMed ID: 34489905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phage delivered CRISPR-Cas system to combat multidrug-resistant pathogens in gut microbiome.
    Nath A; Bhattacharjee R; Nandi A; Sinha A; Kar S; Manoharan N; Mitra S; Mojumdar A; Panda PK; Patro S; Dutt A; Ahuja R; Verma SK; Suar M
    Biomed Pharmacother; 2022 Jul; 151():113122. PubMed ID: 35594718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas10 assisted editing of virulent staphylococcal phages.
    Nayeemul Bari SM; Hatoum-Aslan A
    Methods Enzymol; 2019; 616():385-409. PubMed ID: 30691652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial genome engineering and synthetic biology: combating pathogens.
    Krishnamurthy M; Moore RT; Rajamani S; Panchal RG
    BMC Microbiol; 2016 Nov; 16(1):258. PubMed ID: 27814687
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity.
    Seed KD; Lazinski DW; Calderwood SB; Camilli A
    Nature; 2013 Feb; 494(7438):489-91. PubMed ID: 23446421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clustered Regularly Interspaced Short Palindromic Repeat-Dependent, Biofilm-Specific Death of Pseudomonas aeruginosa Mediated by Increased Expression of Phage-Related Genes.
    Heussler GE; Cady KC; Koeppen K; Bhuju S; Stanton BA; O'Toole GA
    mBio; 2015 May; 6(3):e00129-15. PubMed ID: 25968642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Broadscale phage therapy is unlikely to select for widespread evolution of bacterial resistance to virus infection.
    Cohan FM; Zandi M; Turner PE
    Virus Evol; 2020 Jul; 6(2):veaa060. PubMed ID: 33365149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and Chemical Engineering of Phages for Controlling Multidrug-Resistant Bacteria.
    Guo D; Chen J; Zhao X; Luo Y; Jin M; Fan F; Park C; Yang X; Sun C; Yan J; Chen W; Liu Z
    Antibiotics (Basel); 2021 Feb; 10(2):. PubMed ID: 33669513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploitation of the Cooperative Behaviors of Anti-CRISPR Phages.
    Chevallereau A; Meaden S; Fradet O; Landsberger M; Maestri A; Biswas A; Gandon S; van Houte S; Westra ER
    Cell Host Microbe; 2020 Feb; 27(2):189-198.e6. PubMed ID: 31901522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.