These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 3692579)

  • 1. Respiratory burst activity is impaired during phagocytosis of gelatinized fixed erythrocytes by inflammatory macrophages.
    Gudewicz PW; Blumenstock FA
    Inflammation; 1987 Dec; 11(4):439-46. PubMed ID: 3692579
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of fibronectin fragments on macrophage phagocytosis of gelatinized particles.
    Rourke FJ; Blumenstock FA; Kaplan JE
    J Immunol; 1984 Apr; 132(4):1931-6. PubMed ID: 6230398
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissociation of phagocytosis from stimulation of the oxidative metabolic burst in macrophages.
    Yamamoto K; Johnston RB
    J Exp Med; 1984 Feb; 159(2):405-16. PubMed ID: 6319532
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macrophage dysfunction following the phagocytosis of IgG-coated erythrocytes: production of lipid peroxidation products.
    Loegering DJ; Raley MJ; Reho TA; Eaton JW
    J Leukoc Biol; 1996 Mar; 59(3):357-62. PubMed ID: 8604013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fibronectin-enhanced attachment of gelatin-coated erythrocytes to isolated hepatic Kupffer cells.
    Cardarelli PM; Blumenstock FA; Saba TM; Rourke FJ
    J Leukoc Biol; 1984 Oct; 36(4):477-92. PubMed ID: 6592285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibronectin-mediated uptake of gelatin-coated latex particles by peritoneal macrophages.
    Gudewicz PW; Molnar J; Lai MZ; Beezhold DW; Siefring GE; Credo RB; Lorand L
    J Cell Biol; 1980 Nov; 87(2 Pt 1):427-33. PubMed ID: 7430249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fibronectin levels during intraperitoneal inflammation.
    Richards PS; Saba TM
    Infect Immun; 1983 Mar; 39(3):1411-8. PubMed ID: 6840844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation and functional characterization of ovine bone marrow-derived macrophages.
    Francey T; Schalch L; Brcic M; Peterhans E; Jungi TW
    Vet Immunol Immunopathol; 1992 May; 32(3-4):281-301. PubMed ID: 1632066
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-affinity binding of fibronectin to cultured Kupffer cells.
    Cardarelli PM; Blumenstock FA; McKeown-Longo PJ; Saba TM; Mazurkiewicz JE; Dias JA
    J Leukoc Biol; 1990 Nov; 48(5):426-37. PubMed ID: 2146351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Scavengers of reactive oxygen intermediates do not mediate the depression of macrophage hydrogen peroxide production caused by erythrocyte phagocytosis.
    Schwacha MG; Loegering DJ; Commins LM; Gudewicz PW
    Inflammation; 1991 Dec; 15(6):447-56. PubMed ID: 1757128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selective down-regulation of alveolar macrophage oxidative response to opsonin-independent phagocytosis.
    Kobzik L; Godleski JJ; Brain JD
    J Immunol; 1990 Jun; 144(11):4312-9. PubMed ID: 2160498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of prostaglandin I2 on fibronectin-mediated phagocytosis in vivo and in vitro.
    Weinberg DA; Weston LK; Kaplan JE
    J Leukoc Biol; 1985 Feb; 37(2):151-9. PubMed ID: 2981944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Respiratory burst activity in brain macrophages: a flow cytometric study on cultured rat microglia.
    Banati RB; Rothe G; Valet G; Kreutzberg GW
    Neuropathol Appl Neurobiol; 1991 Jun; 17(3):223-30. PubMed ID: 1891067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Measurement of phagocytosis utilizing 51Cr-labeled tannic acid treated erythrocytes.
    Biegel D; Rabinovitch M
    J Immunol Methods; 1983 Mar; 58(1-2):19-23. PubMed ID: 6833766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of antibody and complement components on phagocytosis and chemiluminescence of macrophages.
    Büscher KH; Klimetzek V; Opferkuch W
    Immunobiology; 1985 Dec; 170(5):390-401. PubMed ID: 2936676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fc receptor-independent phagocytosis by mouse macrophages of erythrocytes sensitized with a lectin from a marine invertebrate.
    Coombe DR; Ey PL; Jenkin CR
    Aust J Exp Biol Med Sci; 1986 Apr; 64 ( Pt 2)():105-18. PubMed ID: 3741266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemiluminescence response of equine alveolar macrophages during stimulation with latex beads, or IgG-opsonized sheep red blood cells.
    Dyer RM; Leid RW
    Inflammation; 1983 Jun; 7(2):169-82. PubMed ID: 6862592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A phagocytic challenge with IgG-coated erythrocytes depresses macrophage respiratory burst and phagocytic function by different mechanisms.
    Raley MJ; Lennartz MR; Loegering DJ
    J Leukoc Biol; 1999 Nov; 66(5):803-8. PubMed ID: 10577512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rac2-deficient murine macrophages have selective defects in superoxide production and phagocytosis of opsonized particles.
    Yamauchi A; Kim C; Li S; Marchal CC; Towe J; Atkinson SJ; Dinauer MC
    J Immunol; 2004 Nov; 173(10):5971-9. PubMed ID: 15528331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. beta 2-glycoprotein I (apolipoprotein H) modulates uptake and endocytosis associated chemiluminescence in rat Kupffer cells.
    Gomes LF; Gonçalves LM; Fonseca FL; Celli CM; Videla LA; Chaimovich H; Junqueira VB
    Free Radic Res; 2002 Jul; 36(7):741-7. PubMed ID: 12180124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.