These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 36926170)
1. The use of deep learning for smartphone-based human activity recognition. Stampfler T; Elgendi M; Fletcher RR; Menon C Front Public Health; 2023; 11():1086671. PubMed ID: 36926170 [TBL] [Abstract][Full Text] [Related]
2. HIT HAR: Human Image Threshing Machine for Human Activity Recognition Using Deep Learning Models. Poulose A; Kim JH; Han DS Comput Intell Neurosci; 2022; 2022():1808990. PubMed ID: 36248917 [TBL] [Abstract][Full Text] [Related]
3. A hybrid TCN-GRU model for classifying human activities using smartphone inertial signals. Raja Sekaran S; Pang YH; You LZ; Yin OS PLoS One; 2024; 19(8):e0304655. PubMed ID: 39137226 [TBL] [Abstract][Full Text] [Related]
4. A hybrid deep approach to recognizing student activity and monitoring health physique based on accelerometer data from smartphones. Xiao L; Luo K; Liu J; Foroughi A Sci Rep; 2024 Jun; 14(1):14006. PubMed ID: 38890409 [TBL] [Abstract][Full Text] [Related]
5. A Robust Deep Learning Approach for Position-Independent Smartphone-Based Human Activity Recognition. Almaslukh B; Artoli AM; Al-Muhtadi J Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30388855 [TBL] [Abstract][Full Text] [Related]
6. Ensem-HAR: An Ensemble Deep Learning Model for Smartphone Sensor-Based Human Activity Recognition for Measurement of Elderly Health Monitoring. Bhattacharya D; Sharma D; Kim W; Ijaz MF; Singh PK Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735541 [TBL] [Abstract][Full Text] [Related]
8. Stacked deep analytic model for human activity recognition on a UCI HAR database. Pang YH; Ping LY; Ling GF; Yin OS; How KW F1000Res; 2021; 10():1046. PubMed ID: 35360410 [TBL] [Abstract][Full Text] [Related]
9. On-Device Deep Learning Inference for Efficient Activity Data Collection. Mairittha N; Mairittha T; Inoue S Sensors (Basel); 2019 Aug; 19(15):. PubMed ID: 31387314 [TBL] [Abstract][Full Text] [Related]
10. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes. Mekruksavanich S; Jitpattanakul A Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33652697 [TBL] [Abstract][Full Text] [Related]
11. The Convolutional Neural Networks Training With Channel-Selectivity for Human Activity Recognition Based on Sensors. Huang W; Zhang L; Teng Q; Song C; He J IEEE J Biomed Health Inform; 2021 Oct; 25(10):3834-3843. PubMed ID: 34170835 [TBL] [Abstract][Full Text] [Related]
12. Design and optimization of a TensorFlow Lite deep learning neural network for human activity recognition on a smartphone. Adi SE; Casson AJ Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():7028-7031. PubMed ID: 34892721 [TBL] [Abstract][Full Text] [Related]
13. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices. Bhat G; Tran N; Shill H; Ogras UY Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046 [TBL] [Abstract][Full Text] [Related]
14. Feature fusion using deep learning for smartphone based human activity recognition. Thakur D; Biswas S Int J Inf Technol; 2021; 13(4):1615-1624. PubMed ID: 34151135 [TBL] [Abstract][Full Text] [Related]
15. Wrapper-based deep feature optimization for activity recognition in the wearable sensor networks of healthcare systems. Sahoo KK; Ghosh R; Mallik S; Roy A; Singh PK; Zhao Z Sci Rep; 2023 Jan; 13(1):965. PubMed ID: 36653370 [TBL] [Abstract][Full Text] [Related]
16. Interpretable deep learning for the remote characterisation of ambulation in multiple sclerosis using smartphones. Creagh AP; Lipsmeier F; Lindemann M; Vos M Sci Rep; 2021 Jul; 11(1):14301. PubMed ID: 34253769 [TBL] [Abstract][Full Text] [Related]
17. Deep Learning in Human Activity Recognition with Wearable Sensors: A Review on Advances. Zhang S; Li Y; Zhang S; Shahabi F; Xia S; Deng Y; Alshurafa N Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214377 [TBL] [Abstract][Full Text] [Related]
18. A Smartphone Lightweight Method for Human Activity Recognition Based on Information Theory. Bragança H; Colonna JG; Lima WS; Souto E Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230830 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of a smartphone human activity recognition application with able-bodied and stroke participants. Capela NA; Lemaire ED; Baddour N; Rudolf M; Goljar N; Burger H J Neuroeng Rehabil; 2016 Jan; 13():5. PubMed ID: 26792670 [TBL] [Abstract][Full Text] [Related]
20. An Efficient and Lightweight Deep Learning Model for Human Activity Recognition Using Smartphones. Ankita ; Rani S; Babbar H; Coleman S; Singh A; Aljahdali HM Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34199559 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]