These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 36926301)

  • 21. Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency.
    Li X; Wang R; Zhang F; Zhao D
    Nano Lett; 2014 Jun; 14(6):3634-9. PubMed ID: 24874018
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quenching of the upconversion luminescence of NaYF₄:Yb³⁺,Er³⁺ and NaYF₄:Yb³⁺,Tm³⁺ nanophosphors by water: the role of the sensitizer Yb³⁺ in non-radiative relaxation.
    Arppe R; Hyppänen I; Perälä N; Peltomaa R; Kaiser M; Würth C; Christ S; Resch-Genger U; Schäferling M; Soukka T
    Nanoscale; 2015 Jul; 7(27):11746-57. PubMed ID: 26104183
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monodisperse Core-Shell NaYF
    Kostiv U; Engstová H; Krajnik B; Šlouf M; Proks V; Podhorodecki A; Ježek P; Horák D
    Front Chem; 2020; 8():497. PubMed ID: 32596210
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Promising Er
    Dutta S; Som S; Chen TM
    ACS Omega; 2018 Sep; 3(9):11088-11096. PubMed ID: 31459217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient sub-15 nm cubic-phase core/shell upconversion nanoparticles as reporters for ensemble and single particle studies.
    Tan M; Monks MJ; Huang D; Meng Y; Chen X; Zhou Y; Lim SF; Würth C; Resch-Genger U; Chen G
    Nanoscale; 2020 May; 12(19):10592-10599. PubMed ID: 32373869
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intense Red-Emitting Upconversion Nanophosphors (800 nm-Driven) with a Core/Double-Shell Structure for Dual-Modal Upconversion Luminescence and Magnetic Resonance in Vivo Imaging Applications.
    Hong AR; Kim Y; Lee TS; Kim S; Lee K; Kim G; Jang HS
    ACS Appl Mater Interfaces; 2018 Apr; 10(15):12331-12340. PubMed ID: 29546978
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In-depth insight into the Yb
    Wang Y; Zhou S; Sun F; Hu P; Zhong W; Fu J
    Nanoscale; 2022 Nov; 14(43):16156-16169. PubMed ID: 36269343
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure.
    Li X; Zhang F; Zhao D
    Chem Soc Rev; 2015 Mar; 44(6):1346-78. PubMed ID: 25052250
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Bi
    Yadav RS; Kumar D; Singh AK; Rai E; Rai SB
    RSC Adv; 2018 Oct; 8(60):34699-34711. PubMed ID: 35548605
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Manganese-Mediated Growth of ZnS Shell on KMnF
    Ning H; Jing L; Hou Y; Kalytchuk S; Li Y; Huang X; Gao M
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11934-11944. PubMed ID: 31975580
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dualistic temperature sensing in Er
    Sinha S; Mahata MK; Kumar K; Tiwari SP; Rai VK
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Feb; 173():369-375. PubMed ID: 27694010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of the synthesis route on the spectroscopic, cytotoxic, and temperature-sensing properties of oleate-capped and ligand-free core/shell nanoparticles.
    Jurga N; Przybylska D; Kamiński P; Tymiński A; Grześkowiak BF; Grzyb T
    J Colloid Interface Sci; 2022 Jan; 606(Pt 2):1421-1434. PubMed ID: 34492477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Temperature sensing and bio-imaging applications based on polyethylenimine/CaF
    Liu G; Sun Z; Fu Z; Ma L; Wang X
    Talanta; 2017 Jul; 169():181-188. PubMed ID: 28411809
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nile Red Derivative-Modified Nanostructure for Upconversion Luminescence Sensing and Intracellular Detection of Fe(3+) and MR Imaging.
    Wei R; Wei Z; Sun L; Zhang JZ; Liu J; Ge X; Shi L
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):400-10. PubMed ID: 26702512
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneous size manipulation and red upconversion luminescence enhancement of CaF
    Yang X; Yuan M; Wang R; Zhao X; Yang Z; Han K; Wang H; Xu X
    RSC Adv; 2019 Apr; 9(23):13201-13206. PubMed ID: 35520799
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dual-Mode nanoprobes for heart tissue imaging.
    Li Y; Li Y
    Talanta; 2022 Oct; 248():123641. PubMed ID: 35671546
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis, Optical Properties, and Sensing Applications of LaF
    Chien HW; Huang CH; Yang CH; Wang TL
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33321848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dual-Mode Upconversion Nanoprobe Enables Broad-Range Thermometry from Cryogenic to Room Temperature.
    Shang Y; Han Q; Hao S; Chen T; Zhu Y; Wang Z; Yang C
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42455-42461. PubMed ID: 31647642
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Facile synthesis of 5 nm NaYF₄:Yb/Er nanoparticles for targeted upconversion imaging of cancer cells.
    Hu Y; Wu B; Jin Q; Wang X; Li Y; Sun Y; Huo J; Zhao X
    Talanta; 2016 May; 152():504-12. PubMed ID: 26992548
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering water-tolerant core/shell upconversion nanoparticles for optical temperature sensing.
    Alkahtani MH; Gomes CL; Hemmer PR
    Opt Lett; 2017 Jul; 42(13):2451-2454. PubMed ID: 28957257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.