These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36926382)

  • 1. Ethane groups modified DNA nanopores to prolong the dwell time on live cell membranes for transmembrane transport.
    Li Y; Chen X; Lv C; Cheng Y
    Front Chem; 2023; 11():1148699. PubMed ID: 36926382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Transport through a Biomimetic DNA Channel on Live Cell Membranes.
    Lv C; Gu X; Li H; Zhao Y; Yang D; Yu W; Han D; Li J; Tan W
    ACS Nano; 2020 Nov; 14(11):14616-14626. PubMed ID: 32897687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional and Biomimetic DNA Nanostructures on Lipid Membranes.
    Wu N; Chen F; Zhao Y; Yu X; Wei J; Zhao Y
    Langmuir; 2018 Dec; 34(49):14721-14730. PubMed ID: 30044097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-state nanopores for biosensing with submolecular resolution.
    Bahrami A; Doğan F; Japrung D; Albrecht T
    Biochem Soc Trans; 2012 Aug; 40(4):624-8. PubMed ID: 22817705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulating the transport of DNA through biofriendly nanochannels in a thin solid membrane.
    Wang D; Harrer S; Luan B; Stolovitzky G; Peng H; Afzali-Ardakani A
    Sci Rep; 2014 Feb; 4():3985. PubMed ID: 24496378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-Stimuli-Responsive and Mechano-Actuated Biomimetic Membrane Nanopores Self-Assembled from DNA.
    Xing Y; Dorey A; Howorka S
    Adv Mater; 2023 Jul; 35(29):e2300589. PubMed ID: 37029712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Light-Triggered Synthetic Nanopore for Controlling Molecular Transport Across Biological Membranes.
    Offenbartl-Stiegert D; Rottensteiner A; Dorey A; Howorka S
    Angew Chem Int Ed Engl; 2022 Dec; 61(52):e202210886. PubMed ID: 36318092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supramolecular Transmembrane Ion Channels Formed by Multiblock Amphiphiles.
    Sato K; Muraoka T; Kinbara K
    Acc Chem Res; 2021 Oct; 54(19):3700-3709. PubMed ID: 34496564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leakless end-to-end transport of small molecules through micron-length DNA nanochannels.
    Li Y; Maffeo C; Joshi H; Aksimentiev A; Ménard B; Schulman R
    Sci Adv; 2022 Sep; 8(36):eabq4834. PubMed ID: 36070388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design, assembly, and characterization of membrane-spanning DNA nanopores.
    Lanphere C; Offenbartl-Stiegert D; Dorey A; Pugh G; Georgiou E; Xing Y; Burns JR; Howorka S
    Nat Protoc; 2021 Jan; 16(1):86-130. PubMed ID: 33349702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Assembly of Membrane-Spanning DNA Nanopores.
    Göpfrich K; Ohmann A; Keyser UF
    Methods Mol Biol; 2021; 2186():33-48. PubMed ID: 32918728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-assembled DNA nanopores that span lipid bilayers.
    Burns JR; Stulz E; Howorka S
    Nano Lett; 2013 Jun; 13(6):2351-6. PubMed ID: 23611515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA Nanotechnology for Building Sensors, Nanopores and Ion-Channels.
    Göpfrich K; Keyser UF
    Adv Exp Med Biol; 2019; 1174():331-370. PubMed ID: 31713205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A large size-selective DNA nanopore with sensing applications.
    Thomsen RP; Malle MG; Okholm AH; Krishnan S; Bohr SS; Sørensen RS; Ries O; Vogel S; Simmel FC; Hatzakis NS; Kjems J
    Nat Commun; 2019 Dec; 10(1):5655. PubMed ID: 31827087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stochastic transport through carbon nanotubes in lipid bilayers and live cell membranes.
    Geng J; Kim K; Zhang J; Escalada A; Tunuguntla R; Comolli LR; Allen FI; Shnyrova AV; Cho KR; Munoz D; Wang YM; Grigoropoulos CP; Ajo-Franklin CM; Frolov VA; Noy A
    Nature; 2014 Oct; 514(7524):612-5. PubMed ID: 25355362
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Temperature-Gated Nanovalve Self-Assembled from DNA to Control Molecular Transport across Membranes.
    Arnott PM; Howorka S
    ACS Nano; 2019 Mar; 13(3):3334-3340. PubMed ID: 30794375
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Light-Controlled Ionic/Molecular Transport through Solid-State Nanopores and Nanochannels.
    Lu J; Jiang Y; Yu P; Jiang W; Mao L
    Chem Asian J; 2022 May; 17(10):e202200158. PubMed ID: 35324076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA Origami in the Quest for Membrane Piercing.
    Niranjan Dhanasekar N; Thiyagarajan D; Bhatia D
    Chem Asian J; 2022 Oct; 17(19):e202200591. PubMed ID: 35947734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double Barrel Nanopores as a New Tool for Controlling Single-Molecule Transport.
    Cadinu P; Campolo G; Pud S; Yang W; Edel JB; Dekker C; Ivanov AP
    Nano Lett; 2018 Apr; 18(4):2738-2745. PubMed ID: 29569930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-assembling organic nanotubes with precisely defined, sub-nanometer pores: formation and mass transport characteristics.
    Gong B; Shao Z
    Acc Chem Res; 2013 Dec; 46(12):2856-66. PubMed ID: 23597055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.