BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36926458)

  • 1. Noise reduction in supercontinuum sources for OCT by single-pulse spectral normalization.
    Niemeier RC; Simmons ZJ; Rogers JD
    Appl Opt; 2020 Jun; 59(18):5521-5526. PubMed ID: 36926458
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Millimeter-scale chip-based supercontinuum generation for optical coherence tomography.
    Ji X; Mojahed D; Okawachi Y; Gaeta AL; Hendon CP; Lipson M
    Sci Adv; 2021 Sep; 7(38):eabg8869. PubMed ID: 34533990
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shot-noise limited, supercontinuum-based optical coherence tomography.
    Rao D S S; Jensen M; Grüner-Nielsen L; Olsen JT; Heiduschka P; Kemper B; Schnekenburger J; Glud M; Mogensen M; Israelsen NM; Bang O
    Light Sci Appl; 2021 Jun; 10(1):133. PubMed ID: 34183643
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Buffer-averaging super-continuum source based spectral domain optical coherence tomography for high speed imaging.
    Chen C; Shi W; Reyes R; Yang VXD
    Biomed Opt Express; 2018 Dec; 9(12):6529-6544. PubMed ID: 31065447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-compact Watt-level flat supercontinuum source pumped by noise-like pulse from an all-fiber oscillator.
    Chen H; Zhou X; Chen SP; Jiang ZF; Hou J
    Opt Express; 2015 Dec; 23(26):32909-16. PubMed ID: 26831958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a high power supercontinuum source in the 1.7 μm wavelength region for highly penetrative ultrahigh-resolution optical coherence tomography.
    Kawagoe H; Ishida S; Aramaki M; Sakakibara Y; Omoda E; Kataura H; Nishizawa N
    Biomed Opt Express; 2014 Mar; 5(3):932-43. PubMed ID: 24688825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Q-switch-pumped supercontinuum for ultra-high resolution optical coherence tomography.
    Maria M; Bravo Gonzalo I; Feuchter T; Denninger M; Moselund PM; Leick L; Bang O; Podoleanu A
    Opt Lett; 2017 Nov; 42(22):4744-4747. PubMed ID: 29140358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compact noise-like pulse fiber laser and its application for supercontinuum generation in highly nonlinear fiber.
    Xia H; Li H; Deng G; Li J; Zhang S; Liu Y
    Appl Opt; 2015 Nov; 54(32):9379-84. PubMed ID: 26560761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm.
    Nishizawa N; Chen Y; Hsiung P; Ippen EP; Fujimoto JG
    Opt Lett; 2004 Dec; 29(24):2846-8. PubMed ID: 15645800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noise characterization of broadband fiber Cherenkov radiation as a visible-wavelength source for optical coherence tomography and two-photon fluorescence microscopy.
    Tu H; Zhao Y; Liu Y; Liu YZ; Boppart S
    Opt Express; 2014 Aug; 22(17):20138-43. PubMed ID: 25321223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope.
    Chong SP; Bernucci M; Radhakrishnan H; Srinivasan VJ
    Biomed Opt Express; 2017 Jan; 8(1):323-337. PubMed ID: 28101421
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Supercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses.
    Lin SS; Hwang SK; Liu JM
    Opt Express; 2014 Feb; 22(4):4152-60. PubMed ID: 24663739
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multispectral photoacoustic microscopy and optical coherence tomography using a single supercontinuum source.
    Bondu M; Marques MJ; Moselund PM; Lall G; Bradu A; Podoleanu A
    Photoacoustics; 2018 Mar; 9():21-30. PubMed ID: 29707477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Suppressing Short-term Polarization Noise and Related Spectral Decoherence in All-normal Dispersion Fiber Supercontinuum Generation.
    Liu Y; Zhao Y; Lyngsø J; You S; Wilson WL; Tu H; Boppart SA
    J Lightwave Technol; 2015 May; 33(9):1814-1820. PubMed ID: 26166939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noise characterization of supercontinuum sources for low-coherence interferometry applications.
    Brown WJ; Kim S; Wax A
    J Opt Soc Am A Opt Image Sci Vis; 2014 Dec; 31(12):2703-10. PubMed ID: 25606759
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-power supercontinuum generation by noise-like pulse amplification in Yb-doped fiber amplifier operating in a nonlinear regime.
    Aghayari E; Jamshidi Ghaleh K
    Appl Opt; 2019 May; 58(15):4020-4024. PubMed ID: 31158152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of pulse-to-pulse fluctuations in visible supercontinuum.
    Kudlinski A; Barviau B; Leray A; Spriet C; Héliot L; Mussot A
    Opt Express; 2010 Dec; 18(26):27445-54. PubMed ID: 21197020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programmable and tunable flat-top supercontinuum laser sources via electro-optic intensity and phase modulation scheme.
    Song M; Song M; Lim S; Choi H; Lee T; Choi G; Jung Y; Ahn JT
    Sci Rep; 2022 Oct; 12(1):18036. PubMed ID: 36302864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation.
    Bravo Gonzalo I; Engelsholm RD; Sørensen MP; Bang O
    Sci Rep; 2018 Apr; 8(1):6579. PubMed ID: 29700316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly coherent supercontinuum generation with picosecond pulses by using self-similar compression.
    Li F; Li Q; Yuan J; Wai PK
    Opt Express; 2014 Nov; 22(22):27339-54. PubMed ID: 25401883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.