BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 36926563)

  • 1. Research progress in architecture and application of RRAM with computing-in-memory.
    Wang C; Shi G; Qiao F; Lin R; Wu S; Hu Z
    Nanoscale Adv; 2023 Mar; 5(6):1559-1573. PubMed ID: 36926563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomic Layer-Deposited HfAlOx-Based RRAM with Low Operating Voltage for Computing In-Memory Applications.
    He ZY; Wang TY; Chen L; Zhu H; Sun QQ; Ding SJ; Zhang DW
    Nanoscale Res Lett; 2019 Feb; 14(1):51. PubMed ID: 30734146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Input Logic-in-Memory for Ultra-Low Power Non-Von Neumann Computing.
    Zanotti T; Pavan P; Puglisi FM
    Micromachines (Basel); 2021 Oct; 12(10):. PubMed ID: 34683294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resistive random access memory: introduction to device mechanism, materials and application to neuromorphic computing.
    Zahoor F; Hussin FA; Isyaku UB; Gupta S; Khanday FA; Chattopadhyay A; Abbas H
    Discov Nano; 2023 Mar; 18(1):36. PubMed ID: 37382679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SLIM: Simultaneous Logic-in-Memory Computing Exploiting Bilayer Analog OxRAM Devices.
    Kingra SK; Parmar V; Chang CC; Hudec B; Hou TH; Suri M
    Sci Rep; 2020 Feb; 10(1):2567. PubMed ID: 32054872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonvolatile Multistates Memories for High-Density Data Storage.
    Cao Q; Lü W; Wang XR; Guan X; Wang L; Yan S; Wu T; Wang X
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):42449-42471. PubMed ID: 32812741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RRAM-based parallel computing architecture using k-nearest neighbor classification for pattern recognition.
    Jiang Y; Kang J; Wang X
    Sci Rep; 2017 Mar; 7():45233. PubMed ID: 28338069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In-Memory Logic Operations and Neuromorphic Computing in Non-Volatile Random Access Memory.
    Ou QF; Xiong BS; Yu L; Wen J; Wang L; Tong Y
    Materials (Basel); 2020 Aug; 13(16):. PubMed ID: 32785179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resistive Random Access Memory (RRAM): an Overview of Materials, Switching Mechanism, Performance, Multilevel Cell (mlc) Storage, Modeling, and Applications.
    Zahoor F; Azni Zulkifli TZ; Khanday FA
    Nanoscale Res Lett; 2020 Apr; 15(1):90. PubMed ID: 32323059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An energy-efficient in-memory computing architecture for survival data analysis based on resistive switching memories.
    Baroni A; Glukhov A; Pérez E; Wenger C; Calore E; Schifano SF; Olivo P; Ielmini D; Zambelli C
    Front Neurosci; 2022; 16():932270. PubMed ID: 36017177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-containing organic compounds for memory and data storage applications.
    Lian H; Cheng X; Hao H; Han J; Lau MT; Li Z; Zhou Z; Dong Q; Wong WY
    Chem Soc Rev; 2022 Mar; 51(6):1926-1982. PubMed ID: 35083990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Logic-In-Memory Paradigms: An Architectural and Technological Perspective.
    Santoro G; Turvani G; Graziano M
    Micromachines (Basel); 2019 May; 10(6):. PubMed ID: 31159236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Low-Power RRAM Memory Block for Embedded, Multi-Level Weight and Bias Storage in Artificial Neural Networks.
    Pechmann S; Mai T; Potschka J; Reiser D; Reichel P; Breiling M; Reichenbach M; Hagelauer A
    Micromachines (Basel); 2021 Oct; 12(11):. PubMed ID: 34832692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monolithic three-dimensional integration of RRAM-based hybrid memory architecture for one-shot learning.
    Li Y; Tang J; Gao B; Yao J; Fan A; Yan B; Yang Y; Xi Y; Li Y; Li J; Sun W; Du Y; Liu Z; Zhang Q; Qiu S; Li Q; Qian H; Wu H
    Nat Commun; 2023 Nov; 14(1):7140. PubMed ID: 37932300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analogue pattern recognition with stochastic switching binary CMOS-integrated memristive devices.
    Zahari F; Pérez E; Mahadevaiah MK; Kohlstedt H; Wenger C; Ziegler M
    Sci Rep; 2020 Sep; 10(1):14450. PubMed ID: 32879397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-Memory-Computing Realization with a Photodiode/Memristor Based Vision Sensor.
    Vasileiadis N; Ntinas V; Sirakoulis GC; Dimitrakis P
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physics-based modeling approaches of resistive switching devices for memory and in-memory computing applications.
    Ielmini D; Milo V
    J Comput Electron; 2017; 16(4):1121-1143. PubMed ID: 31997981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A learnable parallel processing architecture towards unity of memory and computing.
    Li H; Gao B; Chen Z; Zhao Y; Huang P; Ye H; Liu L; Liu X; Kang J
    Sci Rep; 2015 Aug; 5():13330. PubMed ID: 26271243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A compute-in-memory chip based on resistive random-access memory.
    Wan W; Kubendran R; Schaefer C; Eryilmaz SB; Zhang W; Wu D; Deiss S; Raina P; Qian H; Gao B; Joshi S; Wu H; Wong HP; Cauwenberghs G
    Nature; 2022 Aug; 608(7923):504-512. PubMed ID: 35978128
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Post-silicon nano-electronic device and its application in brain-inspired chips.
    Lv Y; Chen H; Wang Q; Li X; Xie C; Song Z
    Front Neurorobot; 2022; 16():948386. PubMed ID: 35966373
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.