These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
155 related articles for article (PubMed ID: 36926567)
41. Position controlled self-catalyzed growth of GaAs nanowires by molecular beam epitaxy. Bauer B; Rudolph A; Soda M; Fontcuberta i Morral A; Zweck J; Schuh D; Reiger E Nanotechnology; 2010 Oct; 21(43):435601. PubMed ID: 20876983 [TBL] [Abstract][Full Text] [Related]
42. Oscillations of As Concentration and Electron-to-Hole Ratio in Si-Doped GaAs Nanowires. Dubrovskii VG; Hijazi H Nanomaterials (Basel); 2020 Apr; 10(5):. PubMed ID: 32349326 [TBL] [Abstract][Full Text] [Related]
43. Structural and optical properties of self-catalytic GaAs:Mn nanowires grown by molecular beam epitaxy on silicon substrates. Gas K; Sadowski J; Kasama T; Siusys A; Zaleszczyk W; Wojciechowski T; Morhange JF; Altintaş A; Xu HQ; Szuszkiewicz W Nanoscale; 2013 Aug; 5(16):7410-8. PubMed ID: 23832244 [TBL] [Abstract][Full Text] [Related]
44. Photo-acoustic spectroscopy revealing resonant absorption of self-assembled GaAs-based nanowires. Leahu G; Petronijevic E; Belardini A; Centini M; Li Voti R; Hakkarainen T; Koivusalo E; Guina M; Sibilia C Sci Rep; 2017 Jun; 7(1):2833. PubMed ID: 28588228 [TBL] [Abstract][Full Text] [Related]
45. ZnTe-ZnO core-shell radial heterostructures grown by the combination of molecular beam epitaxy and atomic layer deposition. Janik E; Wachnicka A; Guziewicz E; Godlewski M; Kret S; Zaleszczyk W; Dynowska E; Presz A; Karczewski G; Wojtowicz T Nanotechnology; 2010 Jan; 21(1):015302. PubMed ID: 19946158 [TBL] [Abstract][Full Text] [Related]
46. Lithography-free oxide patterns as templates for self-catalyzed growth of highly uniform GaAs nanowires on Si(111). Hakkarainen TV; Schramm A; Mäkelä J; Laukkanen P; Guina M Nanotechnology; 2015 Jul; 26(27):275301. PubMed ID: 26087248 [TBL] [Abstract][Full Text] [Related]
47. Molecular beam epitaxy growth of GaAs/InAs core-shell nanowires and fabrication of InAs nanotubes. Rieger T; Luysberg M; Schäpers T; Grützmacher D; Lepsa MI Nano Lett; 2012 Nov; 12(11):5559-64. PubMed ID: 23030380 [TBL] [Abstract][Full Text] [Related]
48. Composition and optical properties of (In, Ga)As nanowires grown by group-III-assisted molecular beam epitaxy. Ruiz MG; Castro A; Herranz J; da Silva A; John P; Trampert A; Brandt O; Geelhaar L; Lähnemann J Nanotechnology; 2024 Apr; 35(26):. PubMed ID: 38527360 [TBL] [Abstract][Full Text] [Related]
49. Room-Temperature Near-Infrared Lasing from GaAs/AlGaAs Core-Shell Nanowires Based on Random Cavity. Meng B; Kang Y; Zhang X; Yu X; Wang S; Wang P; Tang J; Hao Q; Wei Z; Chen R ACS Appl Mater Interfaces; 2024 Aug; 16(31):41677-41683. PubMed ID: 39069675 [TBL] [Abstract][Full Text] [Related]
50. Self-Equilibration of the Diameter of Ga-Catalyzed GaAs Nanowires. Dubrovskii VG; Xu T; Álvarez AD; Plissard SR; Caroff P; Glas F; Grandidier B Nano Lett; 2015 Aug; 15(8):5580-4. PubMed ID: 26189571 [TBL] [Abstract][Full Text] [Related]
52. Growth of long III-As NWs by hydride vapor phase epitaxy. Gil E; Andre Y Nanotechnology; 2021 Apr; 32(16):162002. PubMed ID: 33434903 [TBL] [Abstract][Full Text] [Related]
53. Controlling the morphology and wavelength of self-assembled coaxial GaAs/Ga(As)Sb/GaAs single quantum-well nanowires. Kang Y; Lin F; Tang J; Dai Q; Hou X; Meng B; Wang D; Wang L; Wei Z Phys Chem Chem Phys; 2023 Jan; 25(2):1248-1256. PubMed ID: 36530045 [TBL] [Abstract][Full Text] [Related]
54. Vapour-liquid-solid growth of ZnO-ZnMgO core-shell nanowires by gold-catalysed molecular beam epitaxy. Kennedy OW; White ER; Shaffer MSP; Warburton PA Nanotechnology; 2019 May; 30(19):194001. PubMed ID: 30793703 [TBL] [Abstract][Full Text] [Related]
55. High Yield of GaAs Nanowire Arrays on Si Mediated by the Pinning and Contact Angle of Ga. Russo-Averchi E; Vukajlovic Plestina J; Tütüncüoglu G; Matteini F; Dalmau-Mallorquí A; de la Mata M; Rüffer D; Potts HA; Arbiol J; Conesa-Boj S; Fontcuberta i Morral A Nano Lett; 2015 May; 15(5):2869-74. PubMed ID: 25894762 [TBL] [Abstract][Full Text] [Related]
57. Growth of stacking-faults-free zinc blende GaAs nanowires on Si substrate by using AlGaAs/GaAs buffer layers. Huang H; Ren X; Ye X; Guo J; Wang Q; Yang Y; Cai S; Huang Y Nano Lett; 2010 Jan; 10(1):64-8. PubMed ID: 20000817 [TBL] [Abstract][Full Text] [Related]
58. Defect-Free Self-Catalyzed GaAs/GaAsP Nanowire Quantum Dots Grown on Silicon Substrate. Wu J; Ramsay A; Sanchez A; Zhang Y; Kim D; Brossard F; Hu X; Benamara M; Ware ME; Mazur YI; Salamo GJ; Aagesen M; Wang Z; Liu H Nano Lett; 2016 Jan; 16(1):504-11. PubMed ID: 26666697 [TBL] [Abstract][Full Text] [Related]
59. Wurtzite phase control for self-assisted GaAs nanowires grown by molecular beam epitaxy. Dursap T; Vettori M; Botella C; Regreny P; Blanchard N; Gendry M; Chauvin N; Bugnet M; Danescu A; Penuelas J Nanotechnology; 2021 Apr; 32(15):155602. PubMed ID: 33429384 [TBL] [Abstract][Full Text] [Related]
60. Self-catalyzed growth of GaAs nanowires on cleaved Si by molecular beam epitaxy. Jabeen F; Grillo V; Rubini S; Martelli F Nanotechnology; 2008 Jul; 19(27):275711. PubMed ID: 21828723 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]