BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36926893)

  • 21. Microbiome composition resulting from different substrates influences trichloroethene dechlorination performance.
    Chen WY; Wu JH
    J Environ Manage; 2022 Feb; 303():114145. PubMed ID: 34844052
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metagenomic analysis of microbial community and its role in bioelectrokinetic remediation of tannery contaminated soil.
    Prakash AA; Rajasekar A; Sarankumar RK; AlSalhi MS; Devanesan S; Aljaafreh MJ; Govarthanan M; Sayed SRM
    J Hazard Mater; 2021 Jun; 412():125133. PubMed ID: 33524735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of microbial trichloroethylene dechlorination [corrected] by Fe (III) reduction depends on Fe mineralogy: a batch study using the bioaugmentation culture KB-1.
    Paul L; Herrmann S; Koch CB; Philips J; Smolders E
    Water Res; 2013 May; 47(7):2543-54. PubMed ID: 23490101
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dehalococcoides and general bacterial ecology of differentially trichloroethene dechlorinating flow-through columns.
    Mirza BS; Sorensen DL; McGlinn DJ; Dupont RR; McLean JE
    Appl Microbiol Biotechnol; 2017 Jun; 101(11):4799-4813. PubMed ID: 28213734
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Waste activated sludge stimulates in situ microbial reductive dehalogenation of organohalide-contaminated soil.
    Lu Q; Liu J; He H; Liang Z; Qiu R; Wang S
    J Hazard Mater; 2021 Jun; 411():125189. PubMed ID: 33858119
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The change of microbial community from chlorinated solvent-contaminated groundwater after biostimulation using the metagenome analysis.
    Kao CM; Liao HY; Chien CC; Tseng YK; Tang P; Lin CE; Chen SC
    J Hazard Mater; 2016 Jan; 302():144-150. PubMed ID: 26474376
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial Chain Elongation and Subsequent Fermentation of Elongated Carboxylates as H
    Robles A; Yellowman TL; Joshi S; Mohana Rangan S; Delgado AG
    Environ Sci Technol; 2021 Aug; 55(15):10398-10410. PubMed ID: 34283573
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones.
    He F; Zhao D; Paul C
    Water Res; 2010 Apr; 44(7):2360-70. PubMed ID: 20106501
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bioaugmentation for chlorinated ethenes using Dehalococcoides sp.: comparison between batch and column experiments.
    Schaefer CE; Condee CW; Vainberg S; Steffan RJ
    Chemosphere; 2009 Apr; 75(2):141-8. PubMed ID: 19171368
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Dechlorination of chlorinated ethenes under different redox conditions].
    Lu X; Li G; Zhang X; Zhang W
    Huan Jing Ke Xue; 2002 Mar; 23(2):29-33. PubMed ID: 12048814
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Process-based modeling of electrokinetic-enhanced bioremediation of chlorinated ethenes.
    Sprocati R; Flyvbjerg J; Tuxen N; Rolle M
    J Hazard Mater; 2020 Oct; 397():122787. PubMed ID: 32388097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of Ammonium on Syntrophic Organohalide-Respiring and Fermenting Microbial Communities.
    Delgado AG; Fajardo-Williams D; Kegerreis KL; Parameswaran P; Krajmalnik-Brown R
    mSphere; 2016; 1(2):. PubMed ID: 27303735
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioenhanced dissolution of dense non-aqueous phase of trichloroethylene as affected by iron reducing conditions: model systems and environmental samples.
    Paul L; Smolders E
    Chemosphere; 2015 Jan; 119():1113-1119. PubMed ID: 25460750
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial community response to a bioaugmentation test to degrade trichloroethylene in a fractured rock aquifer, Trenton, N.J.
    Underwood JC; Akob DM; Lorah MM; Imbrigiotta TE; Harvey RW; Tiedeman CR
    FEMS Microbiol Ecol; 2022 Jul; 98(7):. PubMed ID: 35749571
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temperature dependence of sequential chlorinated ethenes dechlorination and the dynamics of dechlorinating microorganisms.
    Yamazaki Y; Kitamura G; Tian X; Suzuki I; Kobayashi T; Shimizu T; Inoue D; Ike M
    Chemosphere; 2022 Jan; 287(Pt 1):131989. PubMed ID: 34450366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electron transport chains in organohalide-respiring bacteria and bioremediation implications.
    Wang S; Qiu L; Liu X; Xu G; Siegert M; Lu Q; Juneau P; Yu L; Liang D; He Z; Qiu R
    Biotechnol Adv; 2018; 36(4):1194-1206. PubMed ID: 29631017
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Grape pomace compost harbors organohalide-respiring Dehalogenimonas species with novel reductive dehalogenase genes.
    Yang Y; Higgins SA; Yan J; Şimşir B; Chourey K; Iyer R; Hettich RL; Baldwin B; Ogles DM; Löffler FE
    ISME J; 2017 Dec; 11(12):2767-2780. PubMed ID: 28809851
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Survival of Vinyl Chloride Respiring Dehalococcoides mccartyi under Long-Term Electron Donor Limitation.
    Mayer-Blackwell K; Azizian MF; Green JK; Spormann AM; Semprini L
    Environ Sci Technol; 2017 Feb; 51(3):1635-1642. PubMed ID: 28002948
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Organohalide Respiring Bacteria and Reductive Dehalogenases: Key Tools in Organohalide Bioremediation.
    Jugder BE; Ertan H; Bohl S; Lee M; Marquis CP; Manefield M
    Front Microbiol; 2016; 7():249. PubMed ID: 26973626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Organohalide-Respiring Bacteria at the Heart of Anaerobic Metabolism in Arctic Wet Tundra Soils.
    Lipson DA; Raab TK; Pérez Castro S; Powell A
    Appl Environ Microbiol; 2021 Jan; 87(3):. PubMed ID: 33187999
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.