These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 36926920)
1. Creatinase: Using Increased Entropy to Improve the Activity and Thermostability. Jiang F; Bian J; Liu H; Li S; Bai X; Zheng L; Jin S; Liu Z; Yang GY; Hong L J Phys Chem B; 2023 Mar; 127(12):2671-2682. PubMed ID: 36926920 [TBL] [Abstract][Full Text] [Related]
2. Entropic contribution to enhanced thermal stability in the thermostable P450 CYP119. Liu Z; Lemmonds S; Huang J; Tyagi M; Hong L; Jain N Proc Natl Acad Sci U S A; 2018 Oct; 115(43):E10049-E10058. PubMed ID: 30297413 [TBL] [Abstract][Full Text] [Related]
3. Improved thermostability of creatinase from Alcaligenes Faecalis through non-biased phylogenetic consensus-guided mutagenesis. Bai X; Li D; Ma F; Deng X; Luo M; Feng Y; Yang G Microb Cell Fact; 2020 Oct; 19(1):194. PubMed ID: 33069232 [TBL] [Abstract][Full Text] [Related]
4. Enhanced thermostability of methyl parathion hydrolase from Ochrobactrum sp. M231 by rational engineering of a glycine to proline mutation. Tian J; Wang P; Gao S; Chu X; Wu N; Fan Y FEBS J; 2010 Dec; 277(23):4901-8. PubMed ID: 20977676 [TBL] [Abstract][Full Text] [Related]
5. Computational Design To Reduce Conformational Flexibility and Aggregation Rates of an Antibody Fab Fragment. Zhang C; Samad M; Yu H; Chakroun N; Hilton D; Dalby PA Mol Pharm; 2018 Aug; 15(8):3079-3092. PubMed ID: 29897777 [TBL] [Abstract][Full Text] [Related]
6. Hook loop dynamics engineering transcended the barrier of activity-stability trade-off and boosted the thermostability of enzymes. Chong W; Zhang Z; Li Z; Meng S; Nian B; Hu Y Int J Biol Macromol; 2024 Oct; 278(Pt 4):134953. PubMed ID: 39181358 [TBL] [Abstract][Full Text] [Related]
7. Effects of helix and fingertip mutations on the thermostability of xyn11A investigated by molecular dynamics simulations and enzyme activity assays. Sutthibutpong T; Rattanarojpong T; Khunrae P J Biomol Struct Dyn; 2018 Nov; 36(15):3978-3992. PubMed ID: 29129140 [TBL] [Abstract][Full Text] [Related]
8. Engineering Clostridium absonum 7α-hydroxysteroid Dehydrogenase for Enhancing Thermostability Based on Flexible Site and ΔΔG Prediction. Lou D; Tan J; Zhu L; Ji S; Tang S; Yao K; Han J; Wang B Protein Pept Lett; 2018; 25(3):230-235. PubMed ID: 29141528 [TBL] [Abstract][Full Text] [Related]
9. Understanding the thermostability and activity of Bacillus subtilis lipase mutants: insights from molecular dynamics simulations. Singh B; Bulusu G; Mitra A J Phys Chem B; 2015 Jan; 119(2):392-409. PubMed ID: 25495458 [TBL] [Abstract][Full Text] [Related]
10. Application of Rigidity Theory to the Thermostabilization of Lipase A from Bacillus subtilis. Rathi PC; Fulton A; Jaeger KE; Gohlke H PLoS Comput Biol; 2016 Mar; 12(3):e1004754. PubMed ID: 27003415 [TBL] [Abstract][Full Text] [Related]
11. Rigidity versus flexibility: the dilemma of understanding protein thermal stability. Karshikoff A; Nilsson L; Ladenstein R FEBS J; 2015 Oct; 282(20):3899-917. PubMed ID: 26074325 [TBL] [Abstract][Full Text] [Related]
12. A measure of conformational entropy change during thermal protein unfolding using neutron spectroscopy. Fitter J Biophys J; 2003 Jun; 84(6):3924-30. PubMed ID: 12770898 [TBL] [Abstract][Full Text] [Related]
13. Stabilization of backbone-circularized protein is attained by synergistic gains in enthalpy of folded structure and entropy of unfolded structure. Shibuya R; Miyafusa T; Honda S FEBS J; 2020 Apr; 287(8):1554-1575. PubMed ID: 31605655 [TBL] [Abstract][Full Text] [Related]
14. Defying the activity-stability trade-off in enzymes: taking advantage of entropy to enhance activity and thermostability. Siddiqui KS Crit Rev Biotechnol; 2017 May; 37(3):309-322. PubMed ID: 26940154 [TBL] [Abstract][Full Text] [Related]
15. Increasing the thermostability of staphylococcal nuclease: implications for the origin of protein thermostability. Chen J; Lu Z; Sakon J; Stites WE J Mol Biol; 2000 Oct; 303(2):125-30. PubMed ID: 11023780 [TBL] [Abstract][Full Text] [Related]
16. Improving thermostability of papain through structure-based protein engineering. Choudhury D; Biswas S; Roy S; Dattagupta JK Protein Eng Des Sel; 2010 Jun; 23(6):457-67. PubMed ID: 20304972 [TBL] [Abstract][Full Text] [Related]
17. Enhancing the Thermostability of Rhizomucor miehei Lipase with a Limited Screening Library by Rational-Design Point Mutations and Disulfide Bonds. Li G; Fang X; Su F; Chen Y; Xu L; Yan Y Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101200 [No Abstract] [Full Text] [Related]
19. Rational Design of Thermostable Carbonic Anhydrase Mutants Using Molecular Dynamics Simulations. Parra-Cruz R; Jäger CM; Lau PL; Gomes RL; Pordea A J Phys Chem B; 2018 Sep; 122(36):8526-8536. PubMed ID: 30114369 [TBL] [Abstract][Full Text] [Related]
20. A rigidifying salt-bridge favors the activity of thermophilic enzyme at high temperatures at the expense of low-temperature activity. Lam SY; Yeung RC; Yu TH; Sze KH; Wong KB PLoS Biol; 2011 Mar; 9(3):e1001027. PubMed ID: 21423654 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]