These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 36927444)
1. Favoring the hierarchical constraint in penalized survival models for randomized trials in precision medicine. Belhechmi S; Le Teuff G; De Bin R; Rotolo F; Michiels S BMC Bioinformatics; 2023 Mar; 24(1):96. PubMed ID: 36927444 [TBL] [Abstract][Full Text] [Related]
2. Accounting for grouped predictor variables or pathways in high-dimensional penalized Cox regression models. Belhechmi S; Bin R; Rotolo F; Michiels S BMC Bioinformatics; 2020 Jul; 21(1):277. PubMed ID: 32615919 [TBL] [Abstract][Full Text] [Related]
3. Identification of biomarker-by-treatment interactions in randomized clinical trials with survival outcomes and high-dimensional spaces. Ternès N; Rotolo F; Heinze G; Michiels S Biom J; 2017 Jul; 59(4):685-701. PubMed ID: 27862181 [TBL] [Abstract][Full Text] [Related]
4. Robust estimation of the expected survival probabilities from high-dimensional Cox models with biomarker-by-treatment interactions in randomized clinical trials. Ternès N; Rotolo F; Michiels S BMC Med Res Methodol; 2017 May; 17(1):83. PubMed ID: 28532387 [TBL] [Abstract][Full Text] [Related]
5. Empirical extensions of the lasso penalty to reduce the false discovery rate in high-dimensional Cox regression models. Ternès N; Rotolo F; Michiels S Stat Med; 2016 Jul; 35(15):2561-73. PubMed ID: 26970107 [TBL] [Abstract][Full Text] [Related]
6. High-dimensional Cox models: the choice of penalty as part of the model building process. Benner A; Zucknick M; Hielscher T; Ittrich C; Mansmann U Biom J; 2010 Feb; 52(1):50-69. PubMed ID: 20166132 [TBL] [Abstract][Full Text] [Related]
7. Bayesian two-step Lasso strategy for biomarker selection in personalized medicine development for time-to-event endpoints. Gu X; Yin G; Lee JJ Contemp Clin Trials; 2013 Nov; 36(2):642-50. PubMed ID: 24075829 [TBL] [Abstract][Full Text] [Related]
8. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
9. A Modified Adaptive Lasso for Identifying Interactions in the Cox Model with the Heredity Constraint. Wang L; Shen J; Thall PF Stat Probab Lett; 2014 Oct; 93():126-133. PubMed ID: 25071299 [TBL] [Abstract][Full Text] [Related]
10. Optimism Bias Correction in Omics Studies with Big Data: Assessment of Penalized Methods on Simulated Data. Zhao Y; Dantony E; Roy P OMICS; 2019 Apr; 23(4):207-213. PubMed ID: 30794050 [TBL] [Abstract][Full Text] [Related]
11. Lasso estimation of hierarchical interactions for analyzing heterogeneity of treatment effect. Du Y; Chen H; Varadhan R Stat Med; 2021 Nov; 40(25):5417-5433. PubMed ID: 34240443 [TBL] [Abstract][Full Text] [Related]
12. Feature-specific inference for penalized regression using local false discovery rates. Miller R; Breheny P Stat Med; 2023 Apr; 42(9):1412-1429. PubMed ID: 36737800 [TBL] [Abstract][Full Text] [Related]
13. Regularized Weighted Nonparametric Likelihood Approach for High-Dimension Sparse Subdistribution Hazards Model for Competing Risk Data. Tapak L; Kosorok MR; Sadeghifar M; Hamidi O; Afshar S; Doosti H Comput Math Methods Med; 2021; 2021():5169052. PubMed ID: 34589136 [TBL] [Abstract][Full Text] [Related]
14. Sparse Group Penalties for bi-level variable selection. Buch G; Schulz A; Schmidtmann I; Strauch K; Wild PS Biom J; 2024 Jun; 66(4):e2200334. PubMed ID: 38747086 [TBL] [Abstract][Full Text] [Related]
15. IPF-LASSO: Integrative Boulesteix AL; De Bin R; Jiang X; Fuchs M Comput Math Methods Med; 2017; 2017():7691937. PubMed ID: 28546826 [TBL] [Abstract][Full Text] [Related]
16. A simulation study on estimating biomarker-treatment interaction effects in randomized trials with prognostic variables. Haller B; Ulm K Trials; 2018 Feb; 19(1):128. PubMed ID: 29463271 [TBL] [Abstract][Full Text] [Related]
17. New adaptive lasso approaches for variable selection in automated pharmacovigilance signal detection. Courtois É; Tubert-Bitter P; Ahmed I BMC Med Res Methodol; 2021 Dec; 21(1):271. PubMed ID: 34852782 [TBL] [Abstract][Full Text] [Related]
19. Least absolute shrinkage and selection operator type methods for the identification of serum biomarkers of overweight and obesity: simulation and application. Vasquez MM; Hu C; Roe DJ; Chen Z; Halonen M; Guerra S BMC Med Res Methodol; 2016 Nov; 16(1):154. PubMed ID: 27842498 [TBL] [Abstract][Full Text] [Related]
20. Application of statistical machine learning in biomarker selection. Vashistha R; Noor Z; Dasgupta S; Pu J; Deng S Sci Rep; 2023 Oct; 13(1):18331. PubMed ID: 37884606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]