These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 36927477)
21. A Slow Short-Term Depression at Purkinje to Deep Cerebellar Nuclear Neuron Synapses Supports Gain-Control and Linear Encoding over Second-Long Time Windows. Pedroarena CM J Neurosci; 2020 Jul; 40(31):5937-5953. PubMed ID: 32554551 [TBL] [Abstract][Full Text] [Related]
22. A model of order-selectivity based on dynamic changes in the balance of excitation and inhibition produced by short-term synaptic plasticity. Goudar V; Buonomano DV J Neurophysiol; 2015 Jan; 113(2):509-23. PubMed ID: 25339707 [TBL] [Abstract][Full Text] [Related]
23. Differential Presynaptic ATP Supply for Basal and High-Demand Transmission. Sobieski C; Fitzpatrick MJ; Mennerick SJ J Neurosci; 2017 Feb; 37(7):1888-1899. PubMed ID: 28093477 [TBL] [Abstract][Full Text] [Related]
24. Delayed expression of activity-dependent gating switch in synaptic AMPARs at a central synapse. Lesperance LS; Yang YM; Wang LY Mol Brain; 2020 Jan; 13(1):6. PubMed ID: 31941524 [TBL] [Abstract][Full Text] [Related]
25. Ischemic insults direct glutamate receptor subunit 2-lacking AMPA receptors to synaptic sites. Liu B; Liao M; Mielke JG; Ning K; Chen Y; Li L; El-Hayek YH; Gomez E; Zukin RS; Fehlings MG; Wan Q J Neurosci; 2006 May; 26(20):5309-19. PubMed ID: 16707783 [TBL] [Abstract][Full Text] [Related]
26. Short-Term Synaptic Plasticity at Interneuronal Synapses Could Sculpt Rhythmic Motor Patterns. Jia Y; Parker D Front Neural Circuits; 2016; 10():4. PubMed ID: 26869889 [TBL] [Abstract][Full Text] [Related]
28. Lrfn2-Mutant Mice Display Suppressed Synaptic Plasticity and Inhibitory Synapse Development and Abnormal Social Communication and Startle Response. Li Y; Kim R; Cho YS; Song WS; Kim D; Kim K; Roh JD; Chung C; Park H; Yang E; Kim SJ; Ko J; Kim H; Kim MH; Bae YC; Kim E J Neurosci; 2018 Jun; 38(26):5872-5887. PubMed ID: 29798891 [TBL] [Abstract][Full Text] [Related]
29. The Uniform and Nonuniform Nature of Slow and Rapid Scaling in Embryonic Motoneurons. Pekala D; Wenner P J Neurosci; 2022 Feb; 42(7):1224-1234. PubMed ID: 34965976 [TBL] [Abstract][Full Text] [Related]
30. Predictable Fluctuations in Excitatory Synaptic Strength Due to Natural Variation in Presynaptic Firing Rate. Ren N; Wei G; Ghanbari A; Stevenson IH J Neurosci; 2022 Nov; 42(46):8608-8620. PubMed ID: 36171085 [TBL] [Abstract][Full Text] [Related]
33. Lactate as a supplemental fuel for synaptic transmission and neuronal network oscillations: Potentials and limitations. Kann O J Neurochem; 2024 May; 168(5):608-631. PubMed ID: 37309602 [TBL] [Abstract][Full Text] [Related]
34. Deletion of the amyloid precursor-like protein 1 (APLP1) enhances excitatory synaptic transmission, reduces network inhibition but does not impair synaptic plasticity in the mouse dentate gyrus. Vnencak M; Paul MH; Hick M; Schwarzacher SW; Del Turco D; Müller UC; Deller T; Jedlicka P J Comp Neurol; 2015 Aug; 523(11):1717-29. PubMed ID: 25728909 [TBL] [Abstract][Full Text] [Related]
35. Impaired transmission at corticothalamic excitatory inputs and intrathalamic GABAergic synapses in the ventrobasal thalamus of heterozygous BDNF knockout mice. Laudes T; Meis S; Munsch T; Lessmann V Neuroscience; 2012 Oct; 222():215-27. PubMed ID: 22796079 [TBL] [Abstract][Full Text] [Related]
36. Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei. Zheng N; Raman IM Cerebellum; 2010 Mar; 9(1):56-66. PubMed ID: 19847585 [TBL] [Abstract][Full Text] [Related]
37. Developmental shift to mitochondrial respiration for energetic support of sustained transmission during maturation at the calyx of Held. Lujan BJ; Singh M; Singh A; Renden RB J Neurophysiol; 2021 Oct; 126(4):976-996. PubMed ID: 34432991 [TBL] [Abstract][Full Text] [Related]
38. Plasticity in the Functional Properties of NMDA Receptors Improves Network Stability during Severe Energy Stress. Bueschke N; Amaral-Silva L; Hu M; Alvarez A; Santin JM J Neurosci; 2024 Feb; 44(9):. PubMed ID: 38262722 [TBL] [Abstract][Full Text] [Related]
39. Enhanced spontaneous transmitter release is the earliest consequence of neocortical hypoxia that can explain the disruption of normal circuit function. Fleidervish IA; Gebhardt C; Astman N; Gutnick MJ; Heinemann U J Neurosci; 2001 Jul; 21(13):4600-8. PubMed ID: 11425888 [TBL] [Abstract][Full Text] [Related]
40. Control of Excitation/Inhibition Balance in a Hippocampal Circuit by Calcium Sensor Protein Regulation of Presynaptic Calcium Channels. Nanou E; Lee A; Catterall WA J Neurosci; 2018 May; 38(18):4430-4440. PubMed ID: 29654190 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]