These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 36928031)

  • 21. Exocyclic amine of the conserved G.U pair at the cleavage site of the Tetrahymena ribozyme contributes to 5'-splice site selection and transition state stabilization.
    Strobel SA; Cech TR
    Biochemistry; 1996 Jan; 35(4):1201-11. PubMed ID: 8573575
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluating group I intron catalytic efficiency in mammalian cells.
    Long MB; Sullenger BA
    Mol Cell Biol; 1999 Oct; 19(10):6479-87. PubMed ID: 10490588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Probing the interplay between the two steps of group I intron splicing: competition of exogenous guanosine with omega G.
    Zarrinkar PP; Sullenger BA
    Biochemistry; 1998 Dec; 37(51):18056-63. PubMed ID: 9922174
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A modified group I intron can function as both a ribozyme and a 5' exon in a trans-exon ligation reaction.
    Tasiouka KI; Burke JM
    Gene; 1994 Jun; 144(1):1-7. PubMed ID: 8026742
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A mechanistic framework for the second step of splicing catalyzed by the Tetrahymena ribozyme.
    Bevilacqua PC; Sugimoto N; Turner DH
    Biochemistry; 1996 Jan; 35(2):648-58. PubMed ID: 8555239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A 3' splice site-binding sequence in the catalytic core of a group I intron.
    Burke JM; Esherick JS; Burfeind WR; King JL
    Nature; 1990 Mar; 344(6261):80-2. PubMed ID: 2406615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Group I permuted intron-exon (PIE) sequences self-splice to produce circular exons.
    Puttaraju M; Been MD
    Nucleic Acids Res; 1992 Oct; 20(20):5357-64. PubMed ID: 1279519
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The mechanism of splicing as told by group II introns: Ancestors of the spliceosome.
    Smathers CM; Robart AR
    Biochim Biophys Acta Gene Regul Mech; 2019; 1862(11-12):194390. PubMed ID: 31202783
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Leaving group stabilization by metal ion coordination and hydrogen bond donation is an evolutionarily conserved feature of group I introns.
    Kuo LY; Piccirilli JA
    Biochim Biophys Acta; 2001 Dec; 1522(3):158-66. PubMed ID: 11779630
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of a conserved J8/7 X P4 base-triple in the Tetrahymena ribozyme.
    Ohki Y; Ikawa Y; Shiraishi H; Inoue T
    J Biochem; 2002 Nov; 132(5):713-8. PubMed ID: 12417020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme.
    Lehnert V; Jaeger L; Michel F; Westhof E
    Chem Biol; 1996 Dec; 3(12):993-1009. PubMed ID: 9000010
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A tertiary interaction in the Tetrahymena intron contributes to selection of the 5' splice site.
    Downs WD; Cech TR
    Genes Dev; 1994 May; 8(10):1198-211. PubMed ID: 7926724
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Relationship between the self-splicing activity and the solidity of the master domain of the Tetrahymena group I ribozyme.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2002 Mar; 291(5):1225-31. PubMed ID: 11883948
    [TBL] [Abstract][Full Text] [Related]  

  • 34. New reactions of the ribosomal RNA precursor of Tetrahymena and the mechanism of self-splicing.
    Inoue T; Sullivan FX; Cech TR
    J Mol Biol; 1986 May; 189(1):143-65. PubMed ID: 2431151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of the nucleotides in the A-rich bulge of the Tetrahymena ribozyme responsible for an efficient self-splicing reaction.
    Ikawa Y; Okada A; Imahori H; Shiraishi H; Inoue T
    J Biochem; 1997 Oct; 122(4):878-82. PubMed ID: 9399595
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Crystal structure of a phage Twort group I ribozyme-product complex.
    Golden BL; Kim H; Chase E
    Nat Struct Mol Biol; 2005 Jan; 12(1):82-9. PubMed ID: 15580277
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Two universally conserved adenosines of the group I intron that are important for self-splicing but not for core catalytic activity.
    Williams KP; Fujimoto DN; Inoue T
    J Biochem; 1994 Jan; 115(1):126-30. PubMed ID: 8188618
    [TBL] [Abstract][Full Text] [Related]  

  • 38. RNA structure, not sequence, determines the 5' splice-site specificity of a group I intron.
    Doudna JA; Cormack BP; Szostak JW
    Proc Natl Acad Sci U S A; 1989 Oct; 86(19):7402-6. PubMed ID: 2678103
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Site-directed mutagenesis of core sequence elements 9R', 9L, 9R, and 2 in self-splicing Tetrahymena pre-rRNA.
    Williamson CL; Tierney WM; Kerker BJ; Burke JM
    J Biol Chem; 1987 Oct; 262(30):14672-82. PubMed ID: 3667597
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Requirements of a group I intron for reactions at the 3' splice site.
    van der Horst G; Inoue T
    J Mol Biol; 1993 Feb; 229(3):685-94. PubMed ID: 8433366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.