These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36928031)

  • 41. Trans-splicing with the group I intron ribozyme from Azoarcus.
    Dolan GF; Müller UF
    RNA; 2014 Feb; 20(2):202-13. PubMed ID: 24344321
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Group I intron self-splicing with adenosine: evidence for a single nucleoside-binding site.
    Been MD; Perrotta AT
    Science; 1991 Apr; 252(5004):434-7. PubMed ID: 2017681
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Minimum secondary structure requirements for catalytic activity of a self-splicing group I intron.
    Beaudry AA; Joyce GF
    Biochemistry; 1990 Jul; 29(27):6534-9. PubMed ID: 2207095
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Sequence specificity of in vivo reverse splicing of the Tetrahymena group I intron.
    Roman J; Rubin MN; Woodson SA
    RNA; 1999 Jan; 5(1):1-13. PubMed ID: 9917062
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cryo-EM Structures of a Group II Intron Reverse Splicing into DNA.
    Haack DB; Yan X; Zhang C; Hingey J; Lyumkis D; Baker TS; Toor N
    Cell; 2019 Jul; 178(3):612-623.e12. PubMed ID: 31348888
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Topological crossing in the misfolded
    Li S; Palo MZ; Pintilie G; Zhang X; Su Z; Kappel K; Chiu W; Zhang K; Das R
    Proc Natl Acad Sci U S A; 2022 Sep; 119(37):e2209146119. PubMed ID: 36067294
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Crystals by design: a strategy for crystallization of a ribozyme derived from the Tetrahymena group I intron.
    Golden BL; Podell ER; Gooding AR; Cech TR
    J Mol Biol; 1997 Aug; 270(5):711-23. PubMed ID: 9245599
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mutations at the guanosine-binding site of the Tetrahymena ribozyme also affect site-specific hydrolysis.
    Legault P; Herschlag D; Celander DW; Cech TR
    Nucleic Acids Res; 1992 Dec; 20(24):6613-9. PubMed ID: 1480482
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Deletion of nonconserved helices near the 3' end of the rRNA intron of Tetrahymena thermophila alters self-splicing but not core catalytic activity.
    Barfod ET; Cech TR
    Genes Dev; 1988 Jun; 2(6):652-63. PubMed ID: 3417146
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Structural Insights into the Mechanism of Group II Intron Splicing.
    Zhao C; Pyle AM
    Trends Biochem Sci; 2017 Jun; 42(6):470-482. PubMed ID: 28438387
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Refolding of rRNA exons enhances dissociation of the Tetrahymena intron.
    Cao Y; Woodson SA
    RNA; 2000 Sep; 6(9):1248-56. PubMed ID: 10999602
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metal ion catalysis during group II intron self-splicing: parallels with the spliceosome.
    Sontheimer EJ; Gordon PM; Piccirilli JA
    Genes Dev; 1999 Jul; 13(13):1729-41. PubMed ID: 10398685
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ribozyme-catalyzed primer extension by trinucleotides: a model for the RNA-catalyzed replication of RNA.
    Doudna JA; Usman N; Szostak JW
    Biochemistry; 1993 Mar; 32(8):2111-5. PubMed ID: 7680575
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Kinetic characterization of the first step of the ribozyme-catalyzed trans excision-splicing reaction.
    Dotson PP; Sinha J; Testa SM
    FEBS J; 2008 Jun; 275(12):3110-22. PubMed ID: 18479464
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The conserved U.G pair in the 5' splice site duplex of a group I intron is required in the first but not the second step of self-splicing.
    Barfod ET; Cech TR
    Mol Cell Biol; 1989 Sep; 9(9):3657-66. PubMed ID: 2779562
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analysis of the P7 region within the catalytic core of the Tetrahymena ribozyme by employing in vitro selection.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Nucleic Acids Symp Ser; 2000; (44):197-8. PubMed ID: 12903336
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Increased efficiency of evolved group I intron spliceozymes by decreased side product formation.
    Amini ZN; Müller UF
    RNA; 2015 Aug; 21(8):1480-9. PubMed ID: 26106216
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RNA reprogramming of alpha-mannosidase mRNA sequences in vitro by myxomycete group IC1 and IE ribozymes.
    Fiskaa T; Lundblad EW; Henriksen JR; Johansen SD; Einvik C
    FEBS J; 2006 Jun; 273(12):2789-800. PubMed ID: 16817905
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Identification of phosphate groups important to self-splicing of the Tetrahymena rRNA intron as determined by phosphorothioate substitution.
    Waring RB
    Nucleic Acids Res; 1989 Dec; 17(24):10281-93. PubMed ID: 2690016
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A conserved base pair within helix P4 of the Tetrahymena ribozyme helps to form the tertiary structure required for self-splicing.
    Flor PJ; Flanegan JB; Cech TR
    EMBO J; 1989 Nov; 8(11):3391-9. PubMed ID: 2684642
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.