These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
117 related articles for article (PubMed ID: 36928066)
1. Modelling daily plant growth response to environmental conditions in Chinese solar greenhouse using Bayesian neural network. Mohmed G; Heynes X; Naser A; Sun W; Hardy K; Grundy S; Lu C Sci Rep; 2023 Mar; 13(1):4379. PubMed ID: 36928066 [TBL] [Abstract][Full Text] [Related]
2. Optimized Design of Irrigation Water-Heating System and Its Effect on Lettuce Cultivation in a Chinese Solar Greenhouse. Guo L; Chen X; Yang S; Zhou R; Liu S; Cao Y Plants (Basel); 2024 Mar; 13(5):. PubMed ID: 38475563 [TBL] [Abstract][Full Text] [Related]
3. Artificial neural network model with different backpropagation algorithms and meteorological data for solar radiation prediction. Heng SY; Ridwan WM; Kumar P; Ahmed AN; Fai CM; Birima AH; El-Shafie A Sci Rep; 2022 Jun; 12(1):10457. PubMed ID: 35729307 [TBL] [Abstract][Full Text] [Related]
4. Temperature prediction of solar greenhouse based on NARX regression neural network. Gao M; Wu Q; Li J; Wang B; Zhou Z; Liu C; Wang D Sci Rep; 2023 Jan; 13(1):1563. PubMed ID: 36709378 [TBL] [Abstract][Full Text] [Related]
5. Deep Learning Based Prediction on Greenhouse Crop Yield Combined TCN and RNN. Gong L; Yu M; Jiang S; Cutsuridis V; Pearson S Sensors (Basel); 2021 Jul; 21(13):. PubMed ID: 34283083 [TBL] [Abstract][Full Text] [Related]
6. Prediction of the outlet flow temperature in a flat plate solar collector using artificial neural network. Shafiey Dehaj M; Zamani Mohiabadi M; Hosseini SMS Environ Monit Assess; 2020 Nov; 192(12):770. PubMed ID: 33215263 [TBL] [Abstract][Full Text] [Related]
7. Experimental study and artificial neural network modeling of tartrazine removal by photocatalytic process under solar light. Sebti A; Souahi F; Mohellebi F; Igoud S Water Sci Technol; 2017 Jul; 76(2):311-322. PubMed ID: 28726698 [TBL] [Abstract][Full Text] [Related]
8. Modelling the reference crop evapotranspiration in the Beas-Sutlej basin (India): an artificial neural network approach based on different combinations of meteorological data. Elbeltagi A; Kumar N; Chandel A; Arshad A; Pande CB; Islam ARMT Environ Monit Assess; 2022 Feb; 194(3):141. PubMed ID: 35118563 [TBL] [Abstract][Full Text] [Related]
9. Predicting dry matter intake in Canadian Holstein dairy cattle using milk mid-infrared reflectance spectroscopy and other commonly available predictors via artificial neural networks. Shadpour S; Chud TCS; Hailemariam D; Oliveira HR; Plastow G; Stothard P; Lassen J; Baldwin R; Miglior F; Baes CF; Tulpan D; Schenkel FS J Dairy Sci; 2022 Oct; 105(10):8257-8271. PubMed ID: 36055837 [TBL] [Abstract][Full Text] [Related]
10. Structural Health Monitoring Impact Classification Method Based on Bayesian Neural Network. Yu H; Seno AH; Sharif Khodaei Z; Aliabadi MHF Polymers (Basel); 2022 Sep; 14(19):. PubMed ID: 36235895 [TBL] [Abstract][Full Text] [Related]
11. Hyperparameter Optimization of Bayesian Neural Network Using Bayesian Optimization and Intelligent Feature Engineering for Load Forecasting. Zulfiqar M; Gamage KAA; Kamran M; Rasheed MB Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746227 [TBL] [Abstract][Full Text] [Related]
12. A microenvironment prediction model for Chinese solar greenhouses based on the bond graph approach. Zhang L; Liu X; Li T; Ji J; Zhao L PLoS One; 2022; 17(5):e0267481. PubMed ID: 35503764 [TBL] [Abstract][Full Text] [Related]
13. Soil Marginal Effect and LSTM Model in Chinese Solar Greenhouse. Cheng W; Wang C; Wang Y; Hao L; Liu Z; Cui Q Sensors (Basel); 2024 Jul; 24(14):. PubMed ID: 39066129 [TBL] [Abstract][Full Text] [Related]
14. IoT-Based Sensor Data Fusion for Determining Optimality Degrees of Microclimate Parameters in Commercial Greenhouse Production of Tomato. Rezvani SM; Abyaneh HZ; Shamshiri RR; Balasundram SK; Dworak V; Goodarzi M; Sultan M; Mahns B Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33198414 [TBL] [Abstract][Full Text] [Related]
15. Predicting the Survival of Gastric Cancer Patients Using Artificial and Bayesian Neural Networks. Korhani Kangi A; Bahrampour A Asian Pac J Cancer Prev; 2018 Feb; 19(2):487-490. PubMed ID: 29480983 [TBL] [Abstract][Full Text] [Related]
16. Effects of orientation and structure on solar radiation interception in Chinese solar greenhouse. Xu D; Li Y; Zhang Y; Xu H; Li T; Liu X PLoS One; 2020; 15(11):e0242002. PubMed ID: 33156887 [TBL] [Abstract][Full Text] [Related]
17. [Meta-analysis of the Italian studies on short-term effects of air pollution]. Biggeri A; Bellini P; Terracini B; Epidemiol Prev; 2001; 25(2 Suppl):1-71. PubMed ID: 11515188 [TBL] [Abstract][Full Text] [Related]
18. Predicting motor vehicle collisions using Bayesian neural network models: an empirical analysis. Xie Y; Lord D; Zhang Y Accid Anal Prev; 2007 Sep; 39(5):922-33. PubMed ID: 17306751 [TBL] [Abstract][Full Text] [Related]
19. Crop Photosynthetic Performance Monitoring Based on a Combined System of Measured and Modelled Chloroplast Electron Transport Rate in Greenhouse Tomato. Yu W; Körner O; Schmidt U Front Plant Sci; 2020; 11():1038. PubMed ID: 32765549 [TBL] [Abstract][Full Text] [Related]
20. Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models. Okut H; Wu XL; Rosa GJ; Bauck S; Woodward BW; Schnabel RD; Taylor JF; Gianola D Genet Sel Evol; 2013 Sep; 45(1):34. PubMed ID: 24024641 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]