BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 36928353)

  • 1. Muscarinic receptor activation overrides boundary conditions on memory updating in a calcium/calmodulin-dependent manner.
    Wideman CE; Huff AE; Messer WS; Winters BD
    Neuropsychopharmacology; 2023 Aug; 48(9):1358-1366. PubMed ID: 36928353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscarinic (M
    Huff AE; McGraw SD; Winters BD
    Hippocampus; 2022 Jan; 32(1):55-66. PubMed ID: 34881482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Muscarinic receptor activation promotes destabilization and updating of object location memories in mice.
    Huff AE; O'Neill OS; Messer WS; Winters BD
    Behav Brain Res; 2024 Mar; 461():114847. PubMed ID: 38185383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activating M1 muscarinic cholinergic receptors induces destabilization of resistant contextual fear memories in rats.
    Abouelnaga KH; Huff AE; O'Neill OS; Messer WS; Winters BD
    Neurobiol Learn Mem; 2023 Nov; 205():107821. PubMed ID: 37666411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Linking muscarinic receptor activation to UPS-mediated object memory destabilization: Implications for long-term memory modification and storage.
    Stiver ML; Cloke JM; Nightingale N; Rizos J; Messer WS; Winters BD
    Neurobiol Learn Mem; 2017 Nov; 145():151-164. PubMed ID: 29030298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluctuating NMDA Receptor Subunit Levels in Perirhinal Cortex Relate to Their Dynamic Roles in Object Memory Destabilization and Reconsolidation.
    Wideman CE; Nguyen J; Jeffries SD; Winters BD
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissociating the involvement of muscarinic and nicotinic cholinergic receptors in object memory destabilization and reconsolidation.
    Wideman CE; Minard EP; Zakaria JM; Capistrano JDR; Scott GA; Winters BD
    Neurobiol Learn Mem; 2022 Nov; 195():107686. PubMed ID: 36174889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of cortical M
    Jardine KH; Wideman CE; MacGregor C; Sgarbossa C; Orr D; Mitchnick KA; Winters BD
    Sci Rep; 2020 Jun; 10(1):9209. PubMed ID: 32514039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increasing the GluN2A/GluN2B Ratio in Neurons of the Mouse Basal and Lateral Amygdala Inhibits the Modification of an Existing Fear Memory Trace.
    Holehonnur R; Phensy AJ; Kim LJ; Milivojevic M; Vuong D; Daison DK; Alex S; Tiner M; Jones LE; Kroener S; Ploski JE
    J Neurosci; 2016 Sep; 36(36):9490-504. PubMed ID: 27605622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The KN-93 Molecule Inhibits Calcium/Calmodulin-Dependent Protein Kinase II (CaMKII) Activity by Binding to Ca
    Wong MH; Samal AB; Lee M; Vlach J; Novikov N; Niedziela-Majka A; Feng JY; Koltun DO; Brendza KM; Kwon HJ; Schultz BE; Sakowicz R; Saad JS; Papalia GA
    J Mol Biol; 2019 Mar; 431(7):1440-1459. PubMed ID: 30753871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholinergic manipulations bidirectionally regulate object memory destabilization.
    Stiver ML; Jacklin DL; Mitchnick KA; Vicic N; Carlin J; O'Hara M; Winters BD
    Learn Mem; 2015 Apr; 22(4):203-14. PubMed ID: 25776038
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of classical neurotransmitter systems in memory reconsolidation: Focus on destabilization.
    Wideman CE; Jardine KH; Winters BD
    Neurobiol Learn Mem; 2018 Dec; 156():68-79. PubMed ID: 30395938
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of calcium/calmodulin (Ca
    Santos-Miranda A; Costa AD; Joviano-Santos JV; Rhana P; Bruno AS; Rocha P; Cau SB; Vieira LQ; Cruz JS; Roman-Campos D
    FASEB J; 2021 Oct; 35(10):e21901. PubMed ID: 34569665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role for calcium-calmodulin-dependent protein kinase II in the consolidation of visual object recognition memory.
    Tinsley CJ; Narduzzo KE; Ho JW; Barker GR; Brown MW; Warburton EC
    Eur J Neurosci; 2009 Sep; 30(6):1128-39. PubMed ID: 19735285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Ca²⁺-calmodulin-Ca²⁺/calmodulin-dependent protein kinase II signaling pathway is involved in oxidative stress-induced mitochondrial permeability transition and apoptosis in isolated rat hepatocytes.
    Toledo FD; Pérez LM; Basiglio CL; Ochoa JE; Sanchez Pozzi EJ; Roma MG
    Arch Toxicol; 2014 Sep; 88(9):1695-709. PubMed ID: 24614978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium/calmodulin-dependent kinase II and nitric oxide synthase 1-dependent modulation of ryanodine receptors during β-adrenergic stimulation is restricted to the dyadic cleft.
    Dries E; Santiago DJ; Johnson DM; Gilbert G; Holemans P; Korte SM; Roderick HL; Sipido KR
    J Physiol; 2016 Oct; 594(20):5923-5939. PubMed ID: 27121757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactome Analysis Reveals Regulator of G Protein Signaling 14 (RGS14) is a Novel Calcium/Calmodulin (Ca
    Evans PR; Gerber KJ; Dammer EB; Duong DM; Goswami D; Lustberg DJ; Zou J; Yang JJ; Dudek SM; Griffin PR; Seyfried NT; Hepler JR
    J Proteome Res; 2018 Apr; 17(4):1700-1711. PubMed ID: 29518331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A significant but rather mild contribution of T286 autophosphorylation to Ca2+/CaM-stimulated CaMKII activity.
    Coultrap SJ; Barcomb K; Bayer KU
    PLoS One; 2012; 7(5):e37176. PubMed ID: 22615928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Angiotensin II-induced oxidative stress resets the Ca2+ dependence of Ca2+-calmodulin protein kinase II and promotes a death pathway conserved across different species.
    Palomeque J; Rueda OV; Sapia L; Valverde CA; Salas M; Petroff MV; Mattiazzi A
    Circ Res; 2009 Dec; 105(12):1204-12. PubMed ID: 19850941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dopaminergic denervation switches dopamine D3 receptor signaling and disrupts its Ca(2+) dependent modulation by CaMKII and calmodulin in striatonigral projections of the rat.
    Avalos-Fuentes A; Albarrán-Bravo S; Loya-Lopéz S; Cortés H; Recillas-Morales S; Magaña JJ; Paz-Bermúdez F; Rangel-Barajas C; Aceves J; Erlij D; Florán B
    Neurobiol Dis; 2015 Feb; 74():336-46. PubMed ID: 25517101
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.