BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 36928392)

  • 41. Scavenger Receptor MARCO Orchestrates Early Defenses and Contributes to Fungal Containment during Cryptococcal Infection.
    Xu J; Flaczyk A; Neal LM; Fa Z; Eastman AJ; Malachowski AN; Cheng D; Moore BB; Curtis JL; Osterholzer JJ; Olszewski MA
    J Immunol; 2017 May; 198(9):3548-3557. PubMed ID: 28298522
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The heat shock protein (Hsp) 70 of Cryptococcus neoformans is associated with the fungal cell surface and influences the interaction between yeast and host cells.
    Silveira CP; Piffer AC; Kmetzsch L; Fonseca FL; Soares DA; Staats CC; Rodrigues ML; Schrank A; Vainstein MH
    Fungal Genet Biol; 2013 Nov; 60():53-63. PubMed ID: 23954835
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cryptococcal transmigration across a model brain blood-barrier: evidence of the Trojan horse mechanism and differences between Cryptococcus neoformans var. grubii strain H99 and Cryptococcus gattii strain R265.
    Sorrell TC; Juillard PG; Djordjevic JT; Kaufman-Francis K; Dietmann A; Milonig A; Combes V; Grau GE
    Microbes Infect; 2016 Jan; 18(1):57-67. PubMed ID: 26369713
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Role of dendritic cell-pathogen interactions in the immune response to pulmonary cryptococcal infection.
    Eastman AJ; Osterholzer JJ; Olszewski MA
    Future Microbiol; 2015; 10(11):1837-57. PubMed ID: 26597428
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cryptococcus neoformans Thermotolerance to Avian Body Temperature Is Sufficient For Extracellular Growth But Not Intracellular Survival In Macrophages.
    Johnston SA; Voelz K; May RC
    Sci Rep; 2016 Feb; 6():20977. PubMed ID: 26883088
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Protective interaction of human phagocytic APC subsets with
    Nelson BN; Daugherty CS; Sharp RR; Booth JL; Patel VI; Metcalf JP; Jones KL; Wozniak KL
    Front Immunol; 2022; 13():1054477. PubMed ID: 36466930
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CD4
    Neal LM; Xing E; Xu J; Kolbe JL; Osterholzer JJ; Segal BM; Williamson PR; Olszewski MA
    mBio; 2017 Nov; 8(6):. PubMed ID: 29162707
    [No Abstract]   [Full Text] [Related]  

  • 48. The Membrane Phospholipid Binding Protein Annexin A2 Promotes Phagocytosis and Nonlytic Exocytosis of Cryptococcus neoformans and Impacts Survival in Fungal Infection.
    Stukes S; Coelho C; Rivera J; Jedlicka AE; Hajjar KA; Casadevall A
    J Immunol; 2016 Aug; 197(4):1252-61. PubMed ID: 27371724
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Outcome of the
    De Leon-Rodriguez CM; Rossi DCP; Fu MS; Dragotakes Q; Coelho C; Guerrero Ros I; Caballero B; Nolan SJ; Casadevall A
    J Immunol; 2018 Jul; 201(2):583-603. PubMed ID: 29858266
    [No Abstract]   [Full Text] [Related]  

  • 50. Antifungal activity of dendritic cell lysosomal proteins against Cryptococcus neoformans.
    Nelson BN; Beakley SG; Posey S; Conn B; Maritz E; Seshu J; Wozniak KL
    Sci Rep; 2021 Jun; 11(1):13619. PubMed ID: 34193926
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cryptococcus neoformans host adaptation: toward biological evidence of dormancy.
    Alanio A; Vernel-Pauillac F; Sturny-Leclère A; Dromer F
    mBio; 2015 Mar; 6(2):. PubMed ID: 25827423
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of the mannose receptor in a murine model of Cryptococcus neoformans infection.
    Dan JM; Kelly RM; Lee CK; Levitz SM
    Infect Immun; 2008 Jun; 76(6):2362-7. PubMed ID: 18391001
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Toll-like receptor 9-dependent activation of bone marrow-derived dendritic cells by URA5 DNA from Cryptococcus neoformans.
    Tanaka M; Ishii K; Nakamura Y; Miyazato A; Maki A; Abe Y; Miyasaka T; Yamamoto H; Akahori Y; Fue M; Takahashi Y; Kanno E; Maruyama R; Kawakami K
    Infect Immun; 2012 Feb; 80(2):778-86. PubMed ID: 22104112
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Titan cells confer protection from phagocytosis in Cryptococcus neoformans infections.
    Okagaki LH; Nielsen K
    Eukaryot Cell; 2012 Jun; 11(6):820-6. PubMed ID: 22544904
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Computational Analysis Reveals a Key Regulator of Cryptococcal Virulence and Determinant of Host Response.
    Gish SR; Maier EJ; Haynes BC; Santiago-Tirado FH; Srikanta DL; Ma CZ; Li LX; Williams M; Crouch EC; Khader SA; Brent MR; Doering TL
    mBio; 2016 Apr; 7(2):e00313-16. PubMed ID: 27094327
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Real-time visualization of phagosomal pH manipulation by
    Santiago-Burgos EJ; Stuckey PV; Santiago-Tirado FH
    Front Cell Infect Microbiol; 2022; 12():967486. PubMed ID: 36211949
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Maintenance of Mitochondrial Morphology in Cryptococcus neoformans Is Critical for Stress Resistance and Virulence.
    Chang AL; Doering TL
    mBio; 2018 Nov; 9(6):. PubMed ID: 30401774
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expulsion of live pathogenic yeast by macrophages.
    Ma H; Croudace JE; Lammas DA; May RC
    Curr Biol; 2006 Nov; 16(21):2156-60. PubMed ID: 17084701
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evasion of Innate Immune Responses by the Highly Virulent Cryptococcus gattii by Altering Capsule Glucuronoxylomannan Structure.
    Urai M; Kaneko Y; Ueno K; Okubo Y; Aizawa T; Fukazawa H; Sugita T; Ohno H; Shibuya K; Kinjo Y; Miyazaki Y
    Front Cell Infect Microbiol; 2015; 5():101. PubMed ID: 26779451
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Regulated Release of Cryptococcal Polysaccharide Drives Virulence and Suppresses Immune Cell Infiltration into the Central Nervous System.
    Denham ST; Verma S; Reynolds RC; Worne CL; Daugherty JM; Lane TE; Brown JCS
    Infect Immun; 2018 Mar; 86(3):. PubMed ID: 29203547
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.