BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 36928505)

  • 1. A deep reinforcement learning algorithm for the rectangular strip packing problem.
    Fang J; Rao Y; Shi M
    PLoS One; 2023; 18(3):e0282598. PubMed ID: 36928505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient constructive heuristic for the rectangular packing problem with rotations.
    Zhao X; Rao Y; Qi P; Lyu Q; Yang P; Yu S
    PLoS One; 2023; 18(12):e0295206. PubMed ID: 38153931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep reinforcement learning algorithm framework for solving multi-objective traveling salesman problem based on feature transformation.
    Zhao S; Gu S
    Neural Netw; 2024 Aug; 176():106359. PubMed ID: 38733797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributed deep reinforcement learning based on bi-objective framework for multi-robot formation.
    Li J; Liu Q; Chi G
    Neural Netw; 2024 Mar; 171():61-72. PubMed ID: 38091765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Deep Reinforcement Learning Algorithm in Uncertain Logistics Transportation Scheduling.
    Yuan Y; Li H; Ji L
    Comput Intell Neurosci; 2021; 2021():5672227. PubMed ID: 34608384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic sub-route-based self-adaptive beam search Q-learning algorithm for traveling salesman problem.
    Zhang J; Liu Q; Han X
    PLoS One; 2023; 18(3):e0283207. PubMed ID: 36943840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on UCAV Maneuvering Decision Method Based on Heuristic Reinforcement Learning.
    Yuan W; Xiwen Z; Rong Z; Shangqin T; Huan Z; Wei D
    Comput Intell Neurosci; 2022; 2022():1477078. PubMed ID: 35281202
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm.
    Ashraf NM; Mostafa RR; Sakr RH; Rashad MZ
    PLoS One; 2021; 16(6):e0252754. PubMed ID: 34111168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Reinforcement Learning for the Detection of Abnormal Data in Smart Meters.
    Sun S; Liu C; Zhu Y; He H; Xiao S; Wen J
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Reinforcement Learning for Indoor Mobile Robot Path Planning.
    Gao J; Ye W; Guo J; Li Z
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Reinforcement Learning from Demonstration via Bayesian Network-Based Knowledge Extraction.
    Zhang Y; Lan Y; Fang Q; Xu X; Li J; Zeng Y
    Comput Intell Neurosci; 2021; 2021():7588221. PubMed ID: 34603434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An approach to solving optimal control problems of nonlinear systems by introducing detail-reward mechanism in deep reinforcement learning.
    Yao S; Liu X; Zhang Y; Cui Z
    Math Biosci Eng; 2022 Jun; 19(9):9258-9290. PubMed ID: 35942758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exact solutions for the 2d-strip packing problem using the positions-and-covering methodology.
    Cid-Garcia NM; Rios-Solis YA
    PLoS One; 2021; 16(1):e0245267. PubMed ID: 33444394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimizing Deep Learning Model for Software Cost Estimation Using Hybrid Meta-Heuristic Algorithmic Approach.
    Ul Hassan CA; Khan MS; Irfan R; Iqbal J; Hussain S; Sajid Ullah S; Alroobaea R; Umar F
    Comput Intell Neurosci; 2022; 2022():3145956. PubMed ID: 36238674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-objective steel plate cutting optimization problem based on real number coding genetic algorithm.
    Xu J; Yang W
    Sci Rep; 2022 Dec; 12(1):22472. PubMed ID: 36577810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A traffic light control method based on multi-agent deep reinforcement learning algorithm.
    Liu D; Li L
    Sci Rep; 2023 Jun; 13(1):9396. PubMed ID: 37296308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep Reinforcement Learning With Modulated Hebbian Plus Q-Network Architecture.
    Ladosz P; Ben-Iwhiwhu E; Dick J; Ketz N; Kolouri S; Krichmar JL; Pilly PK; Soltoggio A
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):2045-2056. PubMed ID: 34559664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automating the packing heuristic design process with genetic programming.
    Burke EK; Hyde MR; Kendall G; Woodward J
    Evol Comput; 2012; 20(1):63-89. PubMed ID: 21609273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Research on predicting 2D-HP protein folding using reinforcement learning with full state space.
    Wu H; Yang R; Fu Q; Chen J; Lu W; Li H
    BMC Bioinformatics; 2019 Dec; 20(Suppl 25):685. PubMed ID: 31874607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning to Solve 3-D Bin Packing Problem via Deep Reinforcement Learning and Constraint Programming.
    Jiang Y; Cao Z; Zhang J
    IEEE Trans Cybern; 2023 May; 53(5):2864-2875. PubMed ID: 34748508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.