These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 36928505)

  • 1. A deep reinforcement learning algorithm for the rectangular strip packing problem.
    Fang J; Rao Y; Shi M
    PLoS One; 2023; 18(3):e0282598. PubMed ID: 36928505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient constructive heuristic for the rectangular packing problem with rotations.
    Zhao X; Rao Y; Qi P; Lyu Q; Yang P; Yu S
    PLoS One; 2023; 18(12):e0295206. PubMed ID: 38153931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep reinforcement learning algorithm framework for solving multi-objective traveling salesman problem based on feature transformation.
    Zhao S; Gu S
    Neural Netw; 2024 Aug; 176():106359. PubMed ID: 38733797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributed deep reinforcement learning based on bi-objective framework for multi-robot formation.
    Li J; Liu Q; Chi G
    Neural Netw; 2024 Mar; 171():61-72. PubMed ID: 38091765
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating Heuristic Methods with Deep Reinforcement Learning for Online 3D Bin-Packing Optimization.
    Wong CC; Tsai TT; Ou CK
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205064
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of Deep Reinforcement Learning Algorithm in Uncertain Logistics Transportation Scheduling.
    Yuan Y; Li H; Ji L
    Comput Intell Neurosci; 2021; 2021():5672227. PubMed ID: 34608384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic sub-route-based self-adaptive beam search Q-learning algorithm for traveling salesman problem.
    Zhang J; Liu Q; Han X
    PLoS One; 2023; 18(3):e0283207. PubMed ID: 36943840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Reinforcement Learning with Local Attention for Single Agile Optical Satellite Scheduling Problem.
    Liu Z; Xiong W; Han C; Yu X
    Sensors (Basel); 2024 Oct; 24(19):. PubMed ID: 39409435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on UCAV Maneuvering Decision Method Based on Heuristic Reinforcement Learning.
    Yuan W; Xiwen Z; Rong Z; Shangqin T; Huan Z; Wei D
    Comput Intell Neurosci; 2022; 2022():1477078. PubMed ID: 35281202
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimizing hyperparameters of deep reinforcement learning for autonomous driving based on whale optimization algorithm.
    Ashraf NM; Mostafa RR; Sakr RH; Rashad MZ
    PLoS One; 2021; 16(6):e0252754. PubMed ID: 34111168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Reinforcement Learning for the Detection of Abnormal Data in Smart Meters.
    Sun S; Liu C; Zhu Y; He H; Xiao S; Wen J
    Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366240
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Reinforcement Learning from Demonstration via Bayesian Network-Based Knowledge Extraction.
    Zhang Y; Lan Y; Fang Q; Xu X; Li J; Zeng Y
    Comput Intell Neurosci; 2021; 2021():7588221. PubMed ID: 34603434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An approach to solving optimal control problems of nonlinear systems by introducing detail-reward mechanism in deep reinforcement learning.
    Yao S; Liu X; Zhang Y; Cui Z
    Math Biosci Eng; 2022 Jun; 19(9):9258-9290. PubMed ID: 35942758
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Reinforcement Learning for Indoor Mobile Robot Path Planning.
    Gao J; Ye W; Guo J; Li Z
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992750
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exact solutions for the 2d-strip packing problem using the positions-and-covering methodology.
    Cid-Garcia NM; Rios-Solis YA
    PLoS One; 2021; 16(1):e0245267. PubMed ID: 33444394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing Deep Learning Model for Software Cost Estimation Using Hybrid Meta-Heuristic Algorithmic Approach.
    Ul Hassan CA; Khan MS; Irfan R; Iqbal J; Hussain S; Sajid Ullah S; Alroobaea R; Umar F
    Comput Intell Neurosci; 2022; 2022():3145956. PubMed ID: 36238674
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multi-objective steel plate cutting optimization problem based on real number coding genetic algorithm.
    Xu J; Yang W
    Sci Rep; 2022 Dec; 12(1):22472. PubMed ID: 36577810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A traffic light control method based on multi-agent deep reinforcement learning algorithm.
    Liu D; Li L
    Sci Rep; 2023 Jun; 13(1):9396. PubMed ID: 37296308
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep Reinforcement Learning With Modulated Hebbian Plus Q-Network Architecture.
    Ladosz P; Ben-Iwhiwhu E; Dick J; Ketz N; Kolouri S; Krichmar JL; Pilly PK; Soltoggio A
    IEEE Trans Neural Netw Learn Syst; 2022 May; 33(5):2045-2056. PubMed ID: 34559664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automating the packing heuristic design process with genetic programming.
    Burke EK; Hyde MR; Kendall G; Woodward J
    Evol Comput; 2012; 20(1):63-89. PubMed ID: 21609273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.