These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 36928514)

  • 1. AUNet: a deep learning method for spectral information classification to identify inks.
    Shi Y; He X; Zhang Q; Yin C; Feng N; Chen H; Lin H
    Anal Methods; 2023 Mar; 15(13):1681-1689. PubMed ID: 36928514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-kernel channel attention combined with convolutional neural network to identify spectral information for tracing the origins of rice samples.
    Wang B; Lu A; Yu L
    Anal Methods; 2023 Jan; 15(2):179-186. PubMed ID: 36515002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A convolution neural network with multi-level convolutional and attention learning for classification of cancer grades and tissue structures in colon histopathological images.
    Dabass M; Vashisth S; Vig R
    Comput Biol Med; 2022 Aug; 147():105680. PubMed ID: 35671654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric coordinate attention spectral-spatial feature fusion network for hyperspectral image classification.
    Cheng S; Wang L; Du A
    Sci Rep; 2021 Aug; 11(1):17408. PubMed ID: 34465852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A residual dense comprehensively regulated convolutional neural network to identify spectral information for egg quality traceability.
    Lin H; He X; Chen H; Li Z; Yin C; Shi Y
    Anal Methods; 2022 Oct; 14(38):3780-3789. PubMed ID: 36124761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of tea quality at different picking periods: A hyperspectral system coupled with a multibranch kernel attention network.
    Wang Y; Ren Y; Kang S; Yin C; Shi Y; Men H
    Food Chem; 2024 Feb; 433():137307. PubMed ID: 37683489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Classification modeling method for hyperspectral stamp-pad ink data based on one-dimensional convolutional neural network.
    Wang S; He H; Lv R; He W; Li C; Cai N
    J Forensic Sci; 2022 Mar; 67(2):550-561. PubMed ID: 34617278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fusion of Hyperspectral CASI and Airborne LiDAR Data for Ground Object Classification through Residual Network.
    Chang Z; Yu H; Zhang Y; Wang K
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning Hierarchical Spectral-Spatial Features for Hyperspectral Image Classification.
    Zhou Y; Wei Y
    IEEE Trans Cybern; 2016 Jul; 46(7):1667-78. PubMed ID: 26241988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Double-branch feature fusion transformer for hyperspectral image classification.
    Dang L; Weng L; Hou Y; Zuo X; Liu Y
    Sci Rep; 2023 Jan; 13(1):272. PubMed ID: 36609624
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial-Spectral Feature Refinement for Hyperspectral Image Classification Based on Attention-Dense 3D-2D-CNN.
    Zhang J; Wei F; Feng F; Wang C
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32933016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning Deep Hierarchical Spatial-Spectral Features for Hyperspectral Image Classification Based on Residual 3D-2D CNN.
    Feng F; Wang S; Wang C; Zhang J
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795511
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Belief Network for Spectral⁻Spatial Classification of Hyperspectral Remote Sensor Data.
    Li C; Wang Y; Zhang X; Gao H; Yang Y; Wang J
    Sensors (Basel); 2019 Jan; 19(1):. PubMed ID: 30626030
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A vegetation classification method based on improved dual-way branch feature fusion U-net.
    Yu H; Jiang D; Peng X; Zhang Y
    Front Plant Sci; 2022; 13():1047091. PubMed ID: 36523616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using dual-channel CNN to classify hyperspectral image based on spatial-spectral information.
    Song HF; Yang WW; Dai SS; Du L; Sun YC
    Math Biosci Eng; 2020 May; 17(4):3450-3477. PubMed ID: 32987538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Red Tide Detection Method Based on Improved U-Net Model-Taking GOCI Data in East China Sea as an Example.
    Han Y; Ding T; Cui P; Wang X; Zheng B; Shen X; Ma Z; Zhang Y; Pan H; Yang S
    Sensors (Basel); 2023 Nov; 23(22):. PubMed ID: 38005581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visible-NIR hyperspectral classification of grass based on multivariate smooth mapping and extreme active learning approach.
    Zhao X; Pan X; Yan W; Zhang S
    Sci Rep; 2022 May; 12(1):9017. PubMed ID: 35637264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Hierarchical Vision Transformer for Hyperspectral and LiDAR Data Classification.
    Xue Z; Tan X; Yu X; Liu B; Yu A; Zhang P
    IEEE Trans Image Process; 2022; 31():3095-3110. PubMed ID: 35404817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Data Field Modeling and Spectral-Spatial Feature Fusion for Hyperspectral Data Classification.
    Liu D; Li J
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27999259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three-Dimensional ResNeXt Network Using Feature Fusion and Label Smoothing for Hyperspectral Image Classification.
    Wu P; Cui Z; Gan Z; Liu F
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32188082
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.