These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 36928531)

  • 1. Correlating microscopic viscoelasticity and structure of an aging colloidal gel using active microrheology and cryogenic scanning electron microscopy.
    Biswas R; Parmar VRS; Thambi AG; Bandyopadhyay R
    Soft Matter; 2023 Mar; 19(13):2407-2416. PubMed ID: 36928531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics and microrheology of colloidal clay-polymer glasses and gels: Size-dependent phenomena and re-entrant behavior at early aging times.
    Shen J; Bhatia SR
    J Chem Phys; 2023 Feb; 158(5):054904. PubMed ID: 36754815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric field induced gelation in aqueous nanoclay suspensions.
    Gadige P; Bandyopadhyay R
    Soft Matter; 2018 Aug; 14(34):6974-6982. PubMed ID: 30043802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Passive microrheology in the effective time domain: analyzing time dependent colloidal dispersions.
    Vyas BM; Orpe AV; Kaushal M; Joshi YM
    Soft Matter; 2016 Oct; 12(39):8167-8176. PubMed ID: 27604578
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic light scattering study and DLVO analysis of physicochemical interactions in colloidal suspensions of charged disks.
    Saha D; Bandyopadhyay R; Joshi YM
    Langmuir; 2015 Mar; 31(10):3012-20. PubMed ID: 25726709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of medium structure on the physicochemical properties of aging colloidal dispersions investigated using the synthetic clay LAPONITE®.
    Misra C; Ranganathan VT; Bandyopadhyay R
    Soft Matter; 2021 Oct; 17(41):9387-9398. PubMed ID: 34605527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trapped-particle microrheology of active suspensions.
    Peng Z; Brady JF
    J Chem Phys; 2022 Sep; 157(10):104119. PubMed ID: 36109215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microrheology of colloidal systems.
    Puertas AM; Voigtmann T
    J Phys Condens Matter; 2014 Jun; 26(24):243101. PubMed ID: 24848328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure and Soft Glassy Dynamics of an Aqueous Laponite Dispersion.
    Suman K; Joshi YM
    Langmuir; 2018 Nov; 34(44):13079-13103. PubMed ID: 30180583
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryo-TEM and AFM Observation of the Time-Dependent Evolution of Amorphous Probucol Nanoparticles Formed by the Aqueous Dispersion of Ternary Solid Dispersions.
    Zhao Z; Katai H; Higashi K; Ueda K; Kawakami K; Moribe K
    Mol Pharm; 2019 May; 16(5):2184-2198. PubMed ID: 30925218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscopic ergodicity breaking governs the emergence and evolution of elasticity in glass-forming nanoclay suspensions.
    Chen Y; Rogers SA; Narayanan S; Harden JL; Leheny RL
    Phys Rev E; 2020 Oct; 102(4-1):042619. PubMed ID: 33212706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physicochemical effects in aging aqueous Laponite suspensions.
    Shahin A; Joshi YM
    Langmuir; 2012 Nov; 28(44):15674-86. PubMed ID: 23057660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of electrolytes on the microstructure and yielding of aqueous dispersions of colloidal clay.
    Ali S; Bandyopadhyay R
    Soft Matter; 2016 Jan; 12(2):414-21. PubMed ID: 26477340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of LAPONITE®-stabilized high internal phase Pickering emulsions under shear.
    Dinkgreve M; Velikov KP; Bonn D
    Phys Chem Chem Phys; 2016 Aug; 18(33):22973-7. PubMed ID: 27485394
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microrheology of colloidal suspensions via dynamic Monte Carlo simulations.
    García Daza FA; Puertas AM; Cuetos A; Patti A
    J Colloid Interface Sci; 2022 Jan; 605():182-192. PubMed ID: 34325340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restricted diffusion of small probe particles in a laponite dispersion.
    Klajner P; Kaloun S; Münch JP; Hébraud P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032308. PubMed ID: 24125269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sedimentation and effective temperature of active colloidal suspensions.
    Palacci J; Cottin-Bizonne C; Ybert C; Bocquet L
    Phys Rev Lett; 2010 Aug; 105(8):088304. PubMed ID: 20868136
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Size dependence of tracer diffusion in a laponite colloidal gel.
    Petit L; Barentin C; Colombani J; Ybert C; Bocquet L
    Langmuir; 2009 Oct; 25(20):12048-55. PubMed ID: 19764772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of nanoparticle shape on the drying of colloidal suspensions.
    Hodges CS; Ding Y; Biggs S
    J Colloid Interface Sci; 2010 Dec; 352(1):99-106. PubMed ID: 20825947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nonlinear microrheology of active Brownian suspensions.
    Burkholder EW; Brady JF
    Soft Matter; 2020 Jan; 16(4):1034-1046. PubMed ID: 31854425
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.