These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. New Microfluidic System for Electrochemical Impedance Spectroscopy Assessment of Cell Culture Performance: Design and Development of New Electrode Material. Chmayssem A; Tanase CE; Verplanck N; Gougis M; Mourier V; Zebda A; Ghaemmaghami AM; Mailley P Biosensors (Basel); 2022 Jun; 12(7):. PubMed ID: 35884254 [TBL] [Abstract][Full Text] [Related]
5. A Microfluidic Device Integrating Impedance Flow Cytometry and Electric Impedance Spectroscopy for High-Efficiency Single-Cell Electrical Property Measurement. Feng Y; Huang L; Zhao P; Liang F; Wang W Anal Chem; 2019 Dec; 91(23):15204-15212. PubMed ID: 31702127 [TBL] [Abstract][Full Text] [Related]
6. Dielectric spectroscopy as a viable biosensing tool for cell and tissue characterization and analysis. Heileman K; Daoud J; Tabrizian M Biosens Bioelectron; 2013 Nov; 49():348-59. PubMed ID: 23796534 [TBL] [Abstract][Full Text] [Related]
7. Microfluidic channel sensory system for electro-addressing cell location, determining confluency, and quantifying a general number of cells. Rapier CE; Jagadeesan S; Vatine G; Ben-Yoav H Sci Rep; 2022 Feb; 12(1):3248. PubMed ID: 35228609 [TBL] [Abstract][Full Text] [Related]
8. Single-cell microfluidic impedance cytometry: from raw signals to cell phenotypes using data analytics. Honrado C; Bisegna P; Swami NS; Caselli F Lab Chip; 2021 Jan; 21(1):22-54. PubMed ID: 33331376 [TBL] [Abstract][Full Text] [Related]
9. Submicron-precision particle characterization in microfluidic impedance cytometry with double differential electrodes. Zhong J; Liang M; Ai Y Lab Chip; 2021 Aug; 21(15):2869-2880. PubMed ID: 34236057 [TBL] [Abstract][Full Text] [Related]
10. A label-free and low-power microelectronic impedance spectroscopy for characterization of exosomes. Shi L; Esfandiari L PLoS One; 2022; 17(7):e0270844. PubMed ID: 35802670 [TBL] [Abstract][Full Text] [Related]
11. Impedance Characteristics of Microfluidic Channels and Integrated Coplanar Parallel Electrodes as Design Parameters for Whole-Channel Analysis in Organ-on-Chip Micro-Systems. Rapier CE; Jagadeesan S; Vatine GD; Ben-Yoav H Biosensors (Basel); 2024 Aug; 14(8):. PubMed ID: 39194604 [TBL] [Abstract][Full Text] [Related]
12. Label-free virus identification and characterization using electrochemical impedance spectroscopy. Poenar DP; Iliescu C; Boulaire J; Yu H Electrophoresis; 2014 Feb; 35(2-3):433-40. PubMed ID: 24285469 [TBL] [Abstract][Full Text] [Related]
13. Recent Advances in Electrical Impedance Sensing Technology for Single-Cell Analysis. Zhang Z; Huang X; Liu K; Lan T; Wang Z; Zhu Z Biosensors (Basel); 2021 Nov; 11(11):. PubMed ID: 34821686 [TBL] [Abstract][Full Text] [Related]
14. Design and 3D modeling investigation of a microfluidic electrode array for electrical impedance measurement of single yeast cells. Geng Y; Zhu Z; Zhang Z; Xu F; Marchisio MA; Wang Z; Pan D; Zhao X; Huang QA Electrophoresis; 2021 Oct; 42(20):1996-2009. PubMed ID: 33938013 [TBL] [Abstract][Full Text] [Related]
15. A Review on Microfluidics-Based Impedance Biosensors. Chen YS; Huang CH; Pai PC; Seo J; Lei KF Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671918 [TBL] [Abstract][Full Text] [Related]
16. Microtrap electrode devices for single cell trapping and impedance measurement. Mondal D; Roychaudhuri C; Das L; Chatterjee J Biomed Microdevices; 2012 Oct; 14(5):955-64. PubMed ID: 22767244 [TBL] [Abstract][Full Text] [Related]