These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36928839)

  • 1. A quadriceps femoris motor pattern for efficient cycling.
    Hering GO; Bertschinger R; Stepan J
    PLoS One; 2023; 18(3):e0282391. PubMed ID: 36928839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle activation during cycling at different cadences: effect of maximal strength capacity.
    Bieuzen F; Lepers R; Vercruyssen F; Hausswirth C; Brisswalter J
    J Electromyogr Kinesiol; 2007 Dec; 17(6):731-8. PubMed ID: 16996277
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Riding posture affects quadriceps femoris oxygenation during an incremental cycle exercise in cycle-based athletes.
    Saito A; Goda M; Yamagishi T; Kawakami Y
    Physiol Rep; 2018 Aug; 6(16):e13832. PubMed ID: 30125046
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Leg muscle recruitment during cycling is less developed in triathletes than cyclists despite matched cycling training loads.
    Chapman AR; Vicenzino B; Blanch P; Hodges PW
    Exp Brain Res; 2007 Aug; 181(3):503-18. PubMed ID: 17549464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromuscular activation pattern of lower extremity muscles during pedaling in cyclists with single amputation of leg and with two legs: a case study.
    Watanabe K; Yamaguchi Y; Fukuda W; Nakazawa S; Kenjo T; Nishiyama T
    BMC Res Notes; 2020 Jun; 13(1):299. PubMed ID: 32571389
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscular activity patterns in 1-legged vs. 2-legged pedaling.
    Park S; Caldwell GE
    J Sport Health Sci; 2021 Jan; 10(1):99-106. PubMed ID: 33518019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of kinetics, kinematics, and electromyography during single-leg assisted and unassisted cycling.
    Bini RR; Jacques TC; Lanferdini FJ; Vaz MA
    J Strength Cond Res; 2015 Jun; 29(6):1534-41. PubMed ID: 25872025
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effect of Cadence on the Mechanics and Energetics of Constant Power Cycling.
    Brennan SF; Cresswell AG; Farris DJ; Lichtwark GA
    Med Sci Sports Exerc; 2019 May; 51(5):941-950. PubMed ID: 30531486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reproducibility of upper leg EMG frequency content during cycling.
    Bini RR; Hoefelmann CP; Costa VP; Diefenthaeler F
    J Sports Sci; 2018 Mar; 36(5):485-491. PubMed ID: 28423987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On voluntary rhythmic leg movement behaviour and control during pedalling.
    Hansen EA
    Acta Physiol (Oxf); 2015 Jun; 214 Suppl 702():1-18. PubMed ID: 26094819
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of electromyography fatigue threshold in lower limb muscles in trained cyclists and untrained non-cyclists.
    Smirmaul BP; Dantas JL; Fontes EB; Altimari LR; Okano AH; Moraes AC
    Electromyogr Clin Neurophysiol; 2010; 50(3-4):149-54. PubMed ID: 20552949
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electromyographic activity and rate of muscle fatigue of the quadriceps femoris during cycling exercise in the severe domain.
    Camata TV; Altimari LR; Bortolotti H; Dantas JL; Fontes EB; Smirmaul BP; Okano AH; Chacon-Mikahil MP; Moraes AC
    J Strength Cond Res; 2011 Sep; 25(9):2537-43. PubMed ID: 21804424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unique neuromuscular activation of the rectus femoris during concentric and eccentric cycling.
    Ema R
    J Electromyogr Kinesiol; 2022 Apr; 63():102638. PubMed ID: 35123180
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heterogeneous neuromuscular activation within human rectus femoris muscle during pedaling.
    Watanabe K; Kouzaki M; Moritani T
    Muscle Nerve; 2015 Sep; 52(3):404-11. PubMed ID: 25524446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quadriceps and hamstring muscle activity during cycling as measured with intramuscular electromyography.
    da Silva JC; Tarassova O; Ekblom MM; Andersson E; Rönquist G; Arndt A
    Eur J Appl Physiol; 2016 Sep; 116(9):1807-17. PubMed ID: 27448605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of crank power and cadence on muscle fascicle shortening velocity, muscle activation and joint-specific power during cycling.
    Riveros-Matthey CD; Carroll TJ; Lichtwark GA; Connick MJ
    J Exp Biol; 2023 Jul; 226(13):. PubMed ID: 37326292
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of Q factor on gross mechanical efficiency and muscular activation in cycling.
    Disley BX; Li FX
    Scand J Med Sci Sports; 2014 Feb; 24(1):117-21. PubMed ID: 22612455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle coordination patterns for efficient cycling.
    Blake OM; Champoux Y; Wakeling JM
    Med Sci Sports Exerc; 2012 May; 44(5):926-38. PubMed ID: 22089483
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quadriceps Muscle Fatigue Reduces Extension and Flexion Power During Maximal Cycling.
    O'Bryan SJ; Taylor JL; D'Amico JM; Rouffet DM
    Front Sports Act Living; 2021; 3():797288. PubMed ID: 35072064
    [No Abstract]   [Full Text] [Related]  

  • 20. Changes in Motor Coordination Induced by Local Fatigue during a Sprint Cycling Task.
    Brøchner Nielsen NP; Hug F; Guével A; Colloud F; Lardy J; Dorel S
    Med Sci Sports Exerc; 2018 Jul; 50(7):1394-1404. PubMed ID: 29432323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.