These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 36928923)
1. Modulation of corticospinal excitability related to the forearm muscle during robot-assisted stepping in humans. Kitamura T; Masugi Y; Yamamoto SI; Ogata T; Kawashima N; Nakazawa K Exp Brain Res; 2023 Apr; 241(4):1089-1100. PubMed ID: 36928923 [TBL] [Abstract][Full Text] [Related]
2. Facilitation of corticospinal excitability in the tibialis anterior muscle during robot-assisted passive stepping in humans. Kamibayashi K; Nakajima T; Takahashi M; Akai M; Nakazawa K Eur J Neurosci; 2009 Jul; 30(1):100-9. PubMed ID: 19523098 [TBL] [Abstract][Full Text] [Related]
3. Rhythmic leg cycling modulates forearm muscle H-reflex amplitude and corticospinal tract excitability. Zehr EP; Klimstra M; Johnson EA; Carroll TJ Neurosci Lett; 2007 May; 419(1):10-4. PubMed ID: 17452078 [TBL] [Abstract][Full Text] [Related]
4. Robotic-assisted stepping modulates monosynaptic reflexes in forearm muscles in the human. Nakajima T; Kitamura T; Kamibayashi K; Komiyama T; Zehr EP; Hundza SR; Nakazawa K J Neurophysiol; 2011 Oct; 106(4):1679-87. PubMed ID: 21775718 [TBL] [Abstract][Full Text] [Related]
5. Task-dependent changes of corticospinal excitability during observation and motor imagery of balance tasks. Mouthon A; Ruffieux J; Wälchli M; Keller M; Taube W Neuroscience; 2015 Sep; 303():535-43. PubMed ID: 26192097 [TBL] [Abstract][Full Text] [Related]
6. Changes in input-output relations in the corticospinal pathway to the lower limb muscles during robot-assisted passive stepping. Kamibayashi K; Nakajima T; Takahashi M; Nakazawa K Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4140-4. PubMed ID: 22255251 [TBL] [Abstract][Full Text] [Related]
7. Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb. Carson RG; Riek S; Mackey DC; Meichenbaum DP; Willms K; Forner M; Byblow WD J Physiol; 2004 Nov; 560(Pt 3):929-40. PubMed ID: 15331684 [TBL] [Abstract][Full Text] [Related]
8. Short-Term Plasticity in a Monosynaptic Reflex Pathway to Forearm Muscles after Continuous Robot-Assisted Passive Stepping. Nakajima T; Kamibayashi K; Kitamura T; Komiyama T; Zehr EP; Nakazawa K Front Hum Neurosci; 2016; 10():368. PubMed ID: 27499737 [TBL] [Abstract][Full Text] [Related]
9. Effect of sensory inputs on the soleus H-reflex amplitude during robotic passive stepping in humans. Kamibayashi K; Nakajima T; Fujita M; Takahashi M; Ogawa T; Akai M; Nakazawa K Exp Brain Res; 2010 Apr; 202(2):385-95. PubMed ID: 20044745 [TBL] [Abstract][Full Text] [Related]
10. Contributions to the understanding of gait control. Simonsen EB Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597 [TBL] [Abstract][Full Text] [Related]
11. Excitability changes in human corticospinal projections to forearm muscles during voluntary movement of ipsilateral foot. Baldissera F; Borroni P; Cavallari P; Cerri G J Physiol; 2002 Mar; 539(Pt 3):903-11. PubMed ID: 11897859 [TBL] [Abstract][Full Text] [Related]
12. Asymmetrical modulation of corticospinal excitability in the contracting and resting contralateral wrist flexors during unilateral shortening, lengthening and isometric contractions. Uematsu A; Obata H; Endoh T; Kitamura T; Hortobágyi T; Nakazawa K; Suzuki S Exp Brain Res; 2010 Sep; 206(1):59-69. PubMed ID: 20730420 [TBL] [Abstract][Full Text] [Related]
13. Excitability changes in human corticospinal projections to muscles moving hand and fingers while viewing a reaching and grasping action. Montagna M; Cerri G; Borroni P; Baldissera F Eur J Neurosci; 2005 Sep; 22(6):1513-20. PubMed ID: 16190904 [TBL] [Abstract][Full Text] [Related]
14. [The influence of vibration on spinal alpha-motoneurons excitability in static conditions and during evoked stepping in human]. Solopova IA; Selionov VA Fiziol Cheloveka; 2012; 38(2):57-65. PubMed ID: 22679797 [TBL] [Abstract][Full Text] [Related]
15. Local vibration induces changes in spinal and corticospinal excitability in vibrated and antagonist muscles. Amiez N; Martin A; Gaveau J; Julliand S; Papaxanthis C; Paizis C J Neurophysiol; 2024 Feb; 131(2):379-393. PubMed ID: 38198664 [TBL] [Abstract][Full Text] [Related]
16. Interlimb coupling from the arms to legs is differentially specified for populations of motor units comprising the compound H-reflex during "reduced" human locomotion. Mezzarane RA; Klimstra M; Lewis A; Hundza SR; Zehr EP Exp Brain Res; 2011 Jan; 208(2):157-68. PubMed ID: 21063693 [TBL] [Abstract][Full Text] [Related]
17. Changes in corticomotor excitability of forearm muscles in relation to static shoulder positions. Ginanneschi F; Dominici F; Biasella A; Gelli F; Rossi A Brain Res; 2006 Feb; 1073-1074():332-8. PubMed ID: 16457787 [TBL] [Abstract][Full Text] [Related]
18. Neural control of rhythmic human arm movement: phase dependence and task modulation of hoffmann reflexes in forearm muscles. Zehr EP; Collins DF; Frigon A; Hoogenboom N J Neurophysiol; 2003 Jan; 89(1):12-21. PubMed ID: 12522155 [TBL] [Abstract][Full Text] [Related]
19. Walking phase modulates H-reflex amplitude in flexor carpi radialis. Domingo A; Klimstra M; Nakajima T; Lam T; Hundza SR J Mot Behav; 2014; 46(1):49-57. PubMed ID: 24313749 [TBL] [Abstract][Full Text] [Related]
20. Corticospinal excitability during walking in humans with absent and partial body weight support. Knikou M; Hajela N; Mummidisetty CK Clin Neurophysiol; 2013 Dec; 124(12):2431-8. PubMed ID: 23810634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]