These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 36929074)

  • 1. Statistical Methods for Integrative Clustering of Multi-omics Data.
    Chalise P; Kwon D; Fridley BL; Mo Q
    Methods Mol Biol; 2023; 2629():73-93. PubMed ID: 36929074
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A fully Bayesian latent variable model for integrative clustering analysis of multi-type omics data.
    Mo Q; Shen R; Guo C; Vannucci M; Chan KS; Hilsenbeck SG
    Biostatistics; 2018 Jan; 19(1):71-86. PubMed ID: 28541380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Randomized singular value decomposition for integrative subtype analysis of 'omics data' using non-negative matrix factorization.
    Ni Y; He J; Chalise P
    Stat Appl Genet Mol Biol; 2023 Jan; 22(1):. PubMed ID: 37937887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clustering and variable selection evaluation of 13 unsupervised methods for multi-omics data integration.
    Pierre-Jean M; Deleuze JF; Le Floch E; Mauger F
    Brief Bioinform; 2020 Dec; 21(6):2011-2030. PubMed ID: 31792509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-omics data fusion using adaptive GTO guided Non-negative matrix factorization for cancer subtype discovery.
    Bansal B; Sahoo A
    Comput Methods Programs Biomed; 2023 Jan; 228():107246. PubMed ID: 36434961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of integrative clustering methods for the analysis of multi-omics data.
    Chauvel C; Novoloaca A; Veyre P; Reynier F; Becker J
    Brief Bioinform; 2020 Mar; 21(2):541-552. PubMed ID: 31220206
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrative clustering of multi-level omics data for disease subtype discovery using sequential double regularization.
    Kim S; Oesterreich S; Kim S; Park Y; Tseng GC
    Biostatistics; 2017 Jan; 18(1):165-179. PubMed ID: 27549122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scMNMF: a novel method for single-cell multi-omics clustering based on matrix factorization.
    Qiu Y; Guo D; Zhao P; Zou Q
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38754408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Network-based integrative clustering of multiple types of genomic data using non-negative matrix factorization.
    Chalise P; Ni Y; Fridley BL
    Comput Biol Med; 2020 Mar; 118():103625. PubMed ID: 31999549
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification.
    Wu D; Wang D; Zhang MQ; Gu J
    BMC Genomics; 2015 Dec; 16():1022. PubMed ID: 26626453
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of cancer subtypes associated with clinical outcomes by multi-omics integrative clustering.
    Crippa V; Malighetti F; Villa M; Graudenzi A; Piazza R; Mologni L; Ramazzotti D
    Comput Biol Med; 2023 Aug; 162():107064. PubMed ID: 37267828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative analysis of multi-omics data for liquid biopsy.
    Chen G; Zhang J; Fu Q; Taly V; Tan F
    Br J Cancer; 2023 Feb; 128(4):505-518. PubMed ID: 36357703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HCNM: Heterogeneous Correlation Network Model for Multi-level Integrative Study of Multi-omics Data for Cancer Subtype Prediction.
    Vangimalla RR; Sreevalsan-Nair J
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():1880-1886. PubMed ID: 34891654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-omics analysis of genomics, epigenomics and transcriptomics for molecular subtypes and core genes for lung adenocarcinoma.
    Zhao Y; Gao Y; Xu X; Zhou J; Wang H
    BMC Cancer; 2021 Mar; 21(1):257. PubMed ID: 33750346
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PIntMF: Penalized Integrative Matrix Factorization method for multi-omics data.
    Pierre-Jean M; Mauger F; Deleuze JF; Le Floch E
    Bioinformatics; 2022 Jan; 38(4):900-907. PubMed ID: 34849583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MCluster-VAEs: An end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data.
    Rong Z; Liu Z; Song J; Cao L; Yu Y; Qiu M; Hou Y
    Comput Biol Med; 2022 Nov; 150():106085. PubMed ID: 36162197
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets.
    Wei Z; Zhang Y; Weng W; Chen J; Cai H
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32533167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subtype-DCC: decoupled contrastive clustering method for cancer subtype identification based on multi-omics data.
    Zhao J; Zhao B; Song X; Lyu C; Chen W; Xiong Y; Wei DQ
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36702755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Paired single-cell multi-omics data integration with Mowgli.
    Huizing GJ; Deutschmann IM; Peyré G; Cantini L
    Nat Commun; 2023 Nov; 14(1):7711. PubMed ID: 38001063
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrative clustering of multi-level 'omic data based on non-negative matrix factorization algorithm.
    Chalise P; Fridley BL
    PLoS One; 2017; 12(5):e0176278. PubMed ID: 28459819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.