These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
490 related articles for article (PubMed ID: 36929076)
1. A Primer on Preprocessing, Visualization, Clustering, and Phenotyping of Barcode-Based Spatial Transcriptomics Data. Ospina O; Soupir A; Fridley BL Methods Mol Biol; 2023; 2629():115-140. PubMed ID: 36929076 [TBL] [Abstract][Full Text] [Related]
2. STdGCN: spatial transcriptomic cell-type deconvolution using graph convolutional networks. Li Y; Luo Y Genome Biol; 2024 Aug; 25(1):206. PubMed ID: 39103939 [TBL] [Abstract][Full Text] [Related]
3. Computational solutions for spatial transcriptomics. Kleino I; Frolovaitė P; Suomi T; Elo LL Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664 [TBL] [Abstract][Full Text] [Related]
4. Analysis and Visualization of Single-Cell Sequencing Data with Scanpy and MetaCell: A Tutorial. Li Y; Sun C; Romanova DY; Wu DO; Fang R; Moroz LL Methods Mol Biol; 2024; 2757():383-445. PubMed ID: 38668977 [TBL] [Abstract][Full Text] [Related]
5. Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and disease biology. Saviano A; Henderson NC; Baumert TF J Hepatol; 2020 Nov; 73(5):1219-1230. PubMed ID: 32534107 [TBL] [Abstract][Full Text] [Related]
6. Deciphering cell-cell communication at single-cell resolution for spatial transcriptomics with subgraph-based graph attention network. Yang W; Wang P; Xu S; Wang T; Luo M; Cai Y; Xu C; Xue G; Que J; Ding Q; Jin X; Yang Y; Pang F; Pang B; Lin Y; Nie H; Xu Z; Ji Y; Jiang Q Nat Commun; 2024 Aug; 15(1):7101. PubMed ID: 39155292 [TBL] [Abstract][Full Text] [Related]
7. Hidden Markov random field models for cell-type assignment of spatially resolved transcriptomics. Zhong C; Tian T; Wei Z Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37944045 [TBL] [Abstract][Full Text] [Related]
8. Single-Cell RNAseq Clustering. Beccuti M; Calogero RA Methods Mol Biol; 2023; 2584():241-250. PubMed ID: 36495454 [TBL] [Abstract][Full Text] [Related]
9. scMAGS: Marker gene selection from scRNA-seq data for spatial transcriptomics studies. Baran Y; Doğan B Comput Biol Med; 2023 Mar; 155():106634. PubMed ID: 36774895 [TBL] [Abstract][Full Text] [Related]
10. Challenges and considerations for single-cell and spatially resolved transcriptomics sample collection during spaceflight. Overbey EG; Das S; Cope H; Madrigal P; Andrusivova Z; Frapard S; Klotz R; Bezdan D; Gupta A; Scott RT; Park J; Chirko D; Galazka JM; Costes SV; Mason CE; Herranz R; Szewczyk NJ; Borg J; Giacomello S Cell Rep Methods; 2022 Nov; 2(11):100325. PubMed ID: 36452864 [TBL] [Abstract][Full Text] [Related]
11. SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information. Li H; Li H; Zhou J; Gao X Bioinformatics; 2022 Oct; 38(21):4878-4884. PubMed ID: 36063455 [TBL] [Abstract][Full Text] [Related]
12. Spatially informed cell-type deconvolution for spatial transcriptomics. Ma Y; Zhou X Nat Biotechnol; 2022 Sep; 40(9):1349-1359. PubMed ID: 35501392 [TBL] [Abstract][Full Text] [Related]
13. Scalable preprocessing for sparse scRNA-seq data exploiting prior knowledge. Mukherjee S; Zhang Y; Fan J; Seelig G; Kannan S Bioinformatics; 2018 Jul; 34(13):i124-i132. PubMed ID: 29949988 [TBL] [Abstract][Full Text] [Related]
14. scNPF: an integrative framework assisted by network propagation and network fusion for preprocessing of single-cell RNA-seq data. Ye W; Ji G; Ye P; Long Y; Xiao X; Li S; Su Y; Wu X BMC Genomics; 2019 May; 20(1):347. PubMed ID: 31068142 [TBL] [Abstract][Full Text] [Related]