These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36929157)

  • 1. Engineering Saccharomyces cerevisiae for the de novo Production of Halogenated Tryptophan and Tryptamine Derivatives.
    Milne N; Sáez-Sáez J; Nielsen AM; Dyekjaer JD; Rago D; Kristensen M; Wulff T; Borodina I
    ChemistryOpen; 2023 Apr; 12(4):e202200266. PubMed ID: 36929157
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reengineering a tryptophan halogenase to preferentially chlorinate a direct alkaloid precursor.
    Glenn WS; Nims E; O'Connor SE
    J Am Chem Soc; 2011 Dec; 133(48):19346-9. PubMed ID: 22050348
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombinant flavin-dependent halogenases are functional in tobacco chloroplasts without co-expression of flavin reductase genes.
    Fräbel S; Krischke M; Staniek A; Warzecha H
    Biotechnol J; 2016 Dec; 11(12):1586-1594. PubMed ID: 27687297
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic engineering of Saccharomyces cerevisiae for the de novo production of psilocybin and related tryptamine derivatives.
    Milne N; Thomsen P; Mølgaard Knudsen N; Rubaszka P; Kristensen M; Borodina I
    Metab Eng; 2020 Jul; 60():25-36. PubMed ID: 32224264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fermentative Production of Halogenated Tryptophan Derivatives with Corynebacterium glutamicum Overexpressing Tryptophanase or Decarboxylase Genes.
    Kerbs A; Burgardt A; Veldmann KH; Schäffer T; Lee JH; Wendisch VF
    Chembiochem; 2022 May; 23(9):e202200007. PubMed ID: 35224830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Corynebacterium glutamicum for the fermentative production of halogenated tryptophan.
    Veldmann KH; Minges H; Sewald N; Lee JH; Wendisch VF
    J Biotechnol; 2019 Feb; 291():7-16. PubMed ID: 30579891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tryptophol formation by Zygosaccharomyces priorianus.
    Rosazza JP; Juhl R; Davis P
    Appl Microbiol; 1973 Jul; 26(1):98-105. PubMed ID: 4580197
    [TBL] [Abstract][Full Text] [Related]  

  • 8. XszenFHal, a novel tryptophan 5-halogenase from Xenorhabdus szentirmaii.
    Domergue J; Erdmann D; Fossey-Jouenne A; Petit JL; Debard A; de Berardinis V; Vergne-Vaxelaire C; Zaparucha A
    AMB Express; 2019 Oct; 9(1):175. PubMed ID: 31673806
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into regioselectivity in the enzymatic chlorination of tryptophan.
    Zhu X; De Laurentis W; Leang K; Herrmann J; Ihlefeld K; van Pée KH; Naismith JH
    J Mol Biol; 2009 Aug; 391(1):74-85. PubMed ID: 19501593
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biosynthesis of natural and halogenated plant monoterpene indole alkaloids in yeast.
    Bradley SA; Lehka BJ; Hansson FG; Adhikari KB; Rago D; Rubaszka P; Haidar AK; Chen L; Hansen LG; Gudich O; Giannakou K; Lengger B; Gill RT; Nakamura Y; de Bernonville TD; Koudounas K; Romero-Suarez D; Ding L; Qiao Y; Frimurer TM; Petersen AA; Besseau S; Kumar S; Gautron N; Melin C; Marc J; Jeanneau R; O'Connor SE; Courdavault V; Keasling JD; Zhang J; Jensen MK
    Nat Chem Biol; 2023 Dec; 19(12):1551-1560. PubMed ID: 37932529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating carbon-halogen bond formation into medicinal plant metabolism.
    Runguphan W; Qu X; O'Connor SE
    Nature; 2010 Nov; 468(7322):461-4. PubMed ID: 21048708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Specific enzymatic chlorination of tryptophan and tryptophan derivatives.
    van Pée KH; Hölzer M
    Adv Exp Med Biol; 1999; 467():603-9. PubMed ID: 10721106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of a Tryptophan 6-Halogenase from Streptomyces albus and Its Regioselectivity Determinants.
    Lee J; Kim J; Kim H; Kim EJ; Jeong HJ; Choi KY; Kim BG
    Chembiochem; 2020 May; 21(10):1446-1452. PubMed ID: 31916339
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of indole alkaloids by metabolic engineering of the tryptophan pathway in rice.
    Dubouzet JG; Matsuda F; Ishihara A; Miyagawa H; Wakasa K
    Plant Biotechnol J; 2013 Dec; 11(9):1103-11. PubMed ID: 23980801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. WRKY1-mediated regulation of tryptophan decarboxylase in tryptamine generation for withanamide production in Withania somnifera (Ashwagandha).
    Jadaun JS; Kushwaha AK; Sangwan NS; Narnoliya LK; Mishra S; Sangwan RS
    Plant Cell Rep; 2020 Nov; 39(11):1443-1465. PubMed ID: 32789542
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flavin Adenine Dinucleotide-Dependent Halogenase XanH and Engineering of Multifunctional Fusion Halogenases.
    Kong L; Wang Q; Deng Z; You D
    Appl Environ Microbiol; 2020 Sep; 86(18):. PubMed ID: 32651204
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering New Branches of the Kynurenine Pathway To Produce Oxo-(2-aminophenyl) and Quinoline Scaffolds in Yeast.
    Torrens-Spence MP; Liu CT; Weng JK
    ACS Synth Biol; 2019 Dec; 8(12):2735-2745. PubMed ID: 31714755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile in Vitro Biocatalytic Production of Diverse Tryptamines.
    McDonald AD; Perkins LJ; Buller AR
    Chembiochem; 2019 Aug; 20(15):1939-1944. PubMed ID: 30864270
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of new-to-nature halogenated indigo precursors in plants.
    Fräbel S; Wagner B; Krischke M; Schmidts V; Thiele CM; Staniek A; Warzecha H
    Metab Eng; 2018 Mar; 46():20-27. PubMed ID: 29466700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered Production of Strictosidine and Analogues in Yeast.
    Misa J; Billingsley JM; Niwa K; Yu RK; Tang Y
    ACS Synth Biol; 2022 Apr; 11(4):1639-1649. PubMed ID: 35294193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.