BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 36929190)

  • 1. Development of probiotic E. coli Nissle 1917 for β-alanine production by using protein and metabolic engineering.
    Hu S; Fei M; Fu B; Yu M; Yuan P; Tang B; Yang H; Sun D
    Appl Microbiol Biotechnol; 2023 Apr; 107(7-8):2277-2288. PubMed ID: 36929190
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rerouting Fluxes of the Central Carbon Metabolism and Relieving Mechanism-Based Inactivation of l-Aspartate-α-decarboxylase for Fermentative Production of β-Alanine in
    Li B; Zhang B; Wang P; Cai X; Chen YY; Yang YF; Liu ZQ; Zheng YG
    ACS Synth Biol; 2022 May; 11(5):1908-1918. PubMed ID: 35476404
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering the probiotic bacterium Escherichia coli Nissle 1917 as an efficient cell factory for heparosan biosynthesis.
    Hu S; Zhao L; Hu L; Xi X; Zhang Y; Wang Y; Chen J; Chen J; Kang Z
    Enzyme Microb Technol; 2022 Aug; 158():110038. PubMed ID: 35453037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli.
    Zou X; Guo L; Huang L; Li M; Zhang S; Yang A; Zhang Y; Zhu L; Zhang H; Zhang J; Feng Z
    Appl Microbiol Biotechnol; 2020 Mar; 104(6):2545-2559. PubMed ID: 31989219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Fermentative Production of β-Alanine from Glucose through Multidimensional Engineering of
    Zhang Y; Zhang G; Zhang H; Tian Y; Li J; Yun J; Zabed HM; Qi X
    J Agric Food Chem; 2024 Jun; 72(25):14274-14283. PubMed ID: 38867465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High density fermentation of probiotic E. coli Nissle 1917 towards heparosan production, characterization, and modification.
    Datta P; Fu L; Brodfuerer P; Dordick JS; Linhardt RJ
    Appl Microbiol Biotechnol; 2021 Feb; 105(3):1051-1062. PubMed ID: 33481068
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Escherichia coli for production of L-aspartate and its derivative β-alanine with high stoichiometric yield.
    Piao X; Wang L; Lin B; Chen H; Liu W; Tao Y
    Metab Eng; 2019 Jul; 54():244-254. PubMed ID: 31063790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhancing β-alanine production from glucose in genetically modified Corynebacterium glutamicum by metabolic pathway engineering.
    Wang JY; Rao ZM; Xu JZ; Zhang WG
    Appl Microbiol Biotechnol; 2021 Dec; 105(24):9153-9166. PubMed ID: 34837493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systems metabolic engineering of Corynebacterium glutamicum for the efficient production of β-alanine.
    Ghiffary MR; Prabowo CPS; Adidjaja JJ; Lee SY; Kim HU
    Metab Eng; 2022 Nov; 74():121-129. PubMed ID: 36341775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplex modification of Escherichia coli for enhanced β-alanine biosynthesis through metabolic engineering.
    Wang P; Zhou HY; Li B; Ding WQ; Liu ZQ; Zheng YG
    Bioresour Technol; 2021 Dec; 342():126050. PubMed ID: 34597803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-quality genome-scale metabolic network reconstruction of probiotic bacterium Escherichia coli Nissle 1917.
    van 't Hof M; Mohite OS; Monk JM; Weber T; Palsson BO; Sommer MOA
    BMC Bioinformatics; 2022 Dec; 23(1):566. PubMed ID: 36585633
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the toolbox of probiotic Escherichia coli Nissle 1917 for synthetic biology.
    Ba F; Zhang Y; Ji X; Liu WQ; Ling S; Li J
    Biotechnol J; 2024 Jan; 19(1):e2300327. PubMed ID: 37800393
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic engineering of probiotic Escherichia coli Nissle 1917 for clinical application.
    Ou B; Yang Y; Tham WL; Chen L; Guo J; Zhu G
    Appl Microbiol Biotechnol; 2016 Oct; 100(20):8693-9. PubMed ID: 27640192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved cryptic plasmids in probiotic Escherichia coli Nissle 1917 for antibiotic-free pathway engineering.
    Dong MM; Song L; Xu JQ; Zhu L; Xiong LB; Wei DZ; Wang FQ
    Appl Microbiol Biotechnol; 2023 Aug; 107(16):5257-5267. PubMed ID: 37405431
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Biosynthetic Pathway for the Production of Acrylic Acid through β-Alanine Route in
    Ko YS; Kim JW; Chae TU; Song CW; Lee SY
    ACS Synth Biol; 2020 May; 9(5):1150-1159. PubMed ID: 32243749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospective and challenges of live bacterial therapeutics from a superhero
    Effendi SSW; Ng IS
    Crit Rev Microbiol; 2023 Sep; 49(5):611-627. PubMed ID: 35947523
    [No Abstract]   [Full Text] [Related]  

  • 17. Metabolic engineering of E. coli for β-alanine production using a multi-biosensor enabled approach.
    Yuan SF; Nair PH; Borbon D; Coleman SM; Fan PH; Lin WL; Alper HS
    Metab Eng; 2022 Nov; 74():24-35. PubMed ID: 36067877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amelioration of cadmium- and mercury-induced liver and kidney damage in rats by genetically engineered probiotic Escherichia coli Nissle 1917 producing pyrroloquinoline quinone with oral supplementation of citric acid.
    Raghuvanshi R; Chaudhari A; Kumar GN
    Nutrition; 2016; 32(11-12):1285-94. PubMed ID: 27209211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systems engineering of Escherichia coli for high-level shikimate production.
    Li Z; Gao C; Ye C; Guo L; Liu J; Chen X; Song W; Wu J; Liu L
    Metab Eng; 2023 Jan; 75():1-11. PubMed ID: 36328295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of a new T7 promoter compatible Escherichia coli Nissle 1917 strain for recombinant production of heme-dependent proteins.
    Fiege K; Frankenberg-Dinkel N
    Microb Cell Fact; 2020 Oct; 19(1):190. PubMed ID: 33023596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.