These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 36929389)
1. High-performing, insensitive and thermally stable energetic materials from zwitterionic Yadav AK; Jujam M; Ghule VD; Dharavath S Chem Commun (Camb); 2023 Apr; 59(29):4324-4327. PubMed ID: 36929389 [TBL] [Abstract][Full Text] [Related]
2. Promising Thermally Stable Energetic Materials with the Combination of Pyrazole-1,3,4-Oxadiazole and Pyrazole-1,2,4-Triazole Backbones: Facile Synthesis and Energetic Performance. Yadav AK; Ghule VD; Dharavath S ACS Appl Mater Interfaces; 2022 Oct; ():. PubMed ID: 36287099 [TBL] [Abstract][Full Text] [Related]
3. Highly Dense N-N-Bridged Dinitramino Bistriazole-Based 3D Metal-Organic Frameworks with Balanced Outstanding Energetic Performance. Rajak R; Kumar N; Ghule VD; Dharavath S ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38598691 [TBL] [Abstract][Full Text] [Related]
4. Zwitterionic fused pyrazolo-triazole based high performing energetic materials. Kumar P; Kumar N; Ghule VD; Dharavath S Chem Commun (Camb); 2024 Feb; 60(12):1646-1649. PubMed ID: 38236126 [TBL] [Abstract][Full Text] [Related]
5. Facile synthesis of thermally stable tetrazolo[1,5- Kumar P; Ghule VD; Dharavath S Dalton Trans; 2023 Jan; 52(3):747-753. PubMed ID: 36562432 [TBL] [Abstract][Full Text] [Related]
6. Exploiting the energetic potential of 1,2,4-oxadiazole derivatives: combining the benefits of a 1,2,4-oxadiazole framework with various energetic functionalities. Yan C; Wang K; Liu T; Yang H; Cheng G; Zhang Q Dalton Trans; 2017 Oct; 46(41):14210-14218. PubMed ID: 28990608 [TBL] [Abstract][Full Text] [Related]
7. Elevating the energetic capabilities of metal coordination compounds by incorporating nitrate anions. Yadav AK; Rajak R; Dharavath S Dalton Trans; 2024 Jun; 53(24):10093-10098. PubMed ID: 38828792 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of C-C bonded trifluoromethyl-based high-energy density materials Kumar P; Mathpati RS; Ghule VD; Dharavath S Dalton Trans; 2024 Sep; 53(36):15324-15329. PubMed ID: 39224089 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of Thermally Stable and Insensitive Energetic Materials by Incorporating the Tetrazole Functionality into a Fused-Ring 3,6-Dinitropyrazolo-[4,3- Xia H; Zhang W; Jin Y; Song S; Wang K; Zhang Q ACS Appl Mater Interfaces; 2019 Dec; 11(49):45914-45921. PubMed ID: 31718130 [TBL] [Abstract][Full Text] [Related]
11. Potassium 4,4'-Bis(dinitromethyl)-3,3'-azofurazanate: A Highly Energetic 3D Metal-Organic Framework as a Promising Primary Explosive. Tang Y; He C; Mitchell LA; Parrish DA; Shreeve JM Angew Chem Int Ed Engl; 2016 Apr; 55(18):5565-7. PubMed ID: 27008350 [TBL] [Abstract][Full Text] [Related]
12. Gem-dinitromethyl-substituted Energetic Metal-Organic Framework based on 1,2,3-Triazole from in situ Controllable Synthesis. Gu H; Ma Q; Huang S; Zhang Z; Zhang Q; Cheng G; Yang H; Fan G Chem Asian J; 2018 Oct; 13(19):2786-2790. PubMed ID: 29888438 [TBL] [Abstract][Full Text] [Related]
13. Single Step Synthesis of Kumar P; Ghule VD; Dharavath S Org Lett; 2024 Jun; 26(22):4788-4792. PubMed ID: 38809597 [No Abstract] [Full Text] [Related]
14. Synthesis and Characterization of 3,4-Bis[3(2-azidoethoxy)furazan-4-yl]furoxan (DAeTF): A Novel Low-Melting Insensitive Energetic Material. Wu Y; Liu Y; Gao F; Chen B; Lu T; Wang Y Molecules; 2024 Sep; 29(19):. PubMed ID: 39407537 [TBL] [Abstract][Full Text] [Related]
15. 1,2,4-Oxadiazole-Bridged Polynitropyrazole Energetic Materials with Enhanced Thermal Stability and Low Sensitivity. Yan T; Cheng G; Yang H Chempluschem; 2019 Oct; 84(10):1567-1577. PubMed ID: 31943922 [TBL] [Abstract][Full Text] [Related]
16. 2-(1,2,4-triazole-5-yl)-1,3,4-oxadiazole as a novel building block for energetic materials. Dong Z; Wu Z; Zhang Q; Xu Y; Lu GP Front Chem; 2022; 10():996812. PubMed ID: 36092665 [TBL] [Abstract][Full Text] [Related]
17. 1,3,4-Oxadiazole Bridges: A Strategy to Improve Energetics at the Molecular Level. Ma J; Chinnam AK; Cheng G; Yang H; Zhang J; Shreeve JM Angew Chem Int Ed Engl; 2021 Mar; 60(10):5497-5504. PubMed ID: 33277822 [TBL] [Abstract][Full Text] [Related]
18. Design and Synthesis of Nitrogen-Rich Azo-Bridged Furoxanylazoles as High-Performance Energetic Materials. Larin AA; Shaferov AV; Kulikov AS; Pivkina AN; Monogarov KA; Dmitrienko AO; Ananyev IV; Khakimov DV; Fershtat LL; Makhova NN Chemistry; 2021 Oct; 27(59):14628-14637. PubMed ID: 34324750 [TBL] [Abstract][Full Text] [Related]
19. Theoretical design and prediction of properties for dinitromethyl, fluorodinitromethyl, and (difluoroamino)dinitromethyl derivatives of triazole and tetrazole. Fei T; Du Y; Pang S RSC Adv; 2018 Mar; 8(19):10215-10227. PubMed ID: 35540492 [TBL] [Abstract][Full Text] [Related]
20. Energetic Salts Based on 3,5-Bis(dinitromethyl)-1,2,4-triazole Monoanion and Dianion: Controllable Preparation, Characterization, and High Performance. Zhang J; Dharavath S; Mitchell LA; Parrish DA; Shreeve JM J Am Chem Soc; 2016 Jun; 138(24):7500-3. PubMed ID: 27267735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]