BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 36929574)

  • 1. The P4-ATPase Drs2 interacts with and stabilizes the multisubunit tethering complex TRAPPIII in yeast.
    Pazos I; Puig-Tintó M; Betancur L; Cordero J; Jiménez-Menéndez N; Abella M; Hernández AC; Duran AG; Adachi-Fernández E; Belmonte-Mateos C; Sabido-Bozo S; Tosi S; Nezu A; Oliva B; Colombelli J; Graham TR; Yoshimori T; Muñiz M; Hamasaki M; Gallego O
    EMBO Rep; 2023 May; 24(5):e56134. PubMed ID: 36929574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. TRAPPIII requires Drs2 binding to transport Atg9 vesicles at cold temperatures.
    Puig-Tintó M; Pazos I; Betancur L; Hernández AC; Gallego O
    Autophagy; 2023 Nov; 19(11):3017-3018. PubMed ID: 37415304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Type IV P-type ATPases distinguish mono- versus diacyl phosphatidylserine using a cytofacial exit gate in the membrane domain.
    Baldridge RD; Xu P; Graham TR
    J Biol Chem; 2013 Jul; 288(27):19516-27. PubMed ID: 23709217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport mechanism of P4 ATPase phosphatidylcholine flippases.
    Bai L; You Q; Jain BK; Duan HD; Kovach A; Graham TR; Li H
    Elife; 2020 Dec; 9():. PubMed ID: 33320091
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atg9 vesicles recruit vesicle-tethering proteins Trs85 and Ypt1 to the autophagosome formation site.
    Kakuta S; Yamamoto H; Negishi L; Kondo-Kakuta C; Hayashi N; Ohsumi Y
    J Biol Chem; 2012 Dec; 287(53):44261-9. PubMed ID: 23129774
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The PQ-loop protein Any1 segregates Drs2 and Neo1 functions required for viability and plasma membrane phospholipid asymmetry.
    Takar M; Huang Y; Graham TR
    J Lipid Res; 2019 May; 60(5):1032-1042. PubMed ID: 30824614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. TRAPPIII is responsible for vesicular transport from early endosomes to Golgi, facilitating Atg9 cycling in autophagy.
    Shirahama-Noda K; Kira S; Yoshimori T; Noda T
    J Cell Sci; 2013 Nov; 126(Pt 21):4963-73. PubMed ID: 23986483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of residues defining phospholipid flippase substrate specificity of type IV P-type ATPases.
    Baldridge RD; Graham TR
    Proc Natl Acad Sci U S A; 2012 Feb; 109(6):E290-8. PubMed ID: 22308393
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphatidylserine flipping enhances membrane curvature and negative charge required for vesicular transport.
    Xu P; Baldridge RD; Chi RJ; Burd CG; Graham TR
    J Cell Biol; 2013 Sep; 202(6):875-86. PubMed ID: 24019533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exofacial membrane composition and lipid metabolism regulates plasma membrane P4-ATPase substrate specificity.
    Jain BK; Roland BP; Graham TR
    J Biol Chem; 2020 Dec; 295(52):17997-18009. PubMed ID: 33060204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conserved mechanism of phospholipid substrate recognition by the P4-ATPase Neo1 from Saccharomyces cerevisiae.
    Huang Y; Takar M; Best JT; Graham TR
    Biochim Biophys Acta Mol Cell Biol Lipids; 2020 Feb; 1865(2):158581. PubMed ID: 31786280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-gate mechanism for phospholipid selection and transport by type IV P-type ATPases.
    Baldridge RD; Graham TR
    Proc Natl Acad Sci U S A; 2013 Jan; 110(5):E358-67. PubMed ID: 23302692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linking phospholipid flippases to vesicle-mediated protein transport.
    Muthusamy BP; Natarajan P; Zhou X; Graham TR
    Biochim Biophys Acta; 2009 Jul; 1791(7):612-9. PubMed ID: 19286470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast and human P4-ATPases transport glycosphingolipids using conserved structural motifs.
    Roland BP; Naito T; Best JT; Arnaiz-Yépez C; Takatsu H; Yu RJ; Shin HW; Graham TR
    J Biol Chem; 2019 Feb; 294(6):1794-1806. PubMed ID: 30530492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasma membrane aminoglycerolipid flippase function is required for signaling competence in the yeast mating pheromone response pathway.
    Sartorel E; Barrey E; Lau RK; Thorner J
    Mol Biol Cell; 2015 Jan; 26(1):134-50. PubMed ID: 25378585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed evolution of a sphingomyelin flippase reveals mechanism of substrate backbone discrimination by a P4-ATPase.
    Roland BP; Graham TR
    Proc Natl Acad Sci U S A; 2016 Aug; 113(31):E4460-6. PubMed ID: 27432949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drs2p-coupled aminophospholipid translocase activity in yeast Golgi membranes and relationship to in vivo function.
    Natarajan P; Wang J; Hua Z; Graham TR
    Proc Natl Acad Sci U S A; 2004 Jul; 101(29):10614-9. PubMed ID: 15249668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Auto-inhibition of Drs2p, a yeast phospholipid flippase, by its carboxyl-terminal tail.
    Zhou X; Sebastian TT; Graham TR
    J Biol Chem; 2013 Nov; 288(44):31807-15. PubMed ID: 24045945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Essential Neo1 Protein from Budding Yeast Plays a Role in Establishing Aminophospholipid Asymmetry of the Plasma Membrane.
    Takar M; Wu Y; Graham TR
    J Biol Chem; 2016 Jul; 291(30):15727-39. PubMed ID: 27235400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lipid Transport by
    Jain BK; Wagner AS; Reynolds TB; Graham TR
    Infect Immun; 2022 Nov; 90(11):e0041622. PubMed ID: 36214556
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.