BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36929945)

  • 1. A simple tandem mass spectrometry method for structural identification of pentose oligosaccharides.
    Tsai ST; Hsu HC; Ni CK
    Analyst; 2023 Apr; 148(8):1712-1731. PubMed ID: 36929945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Anomericity and Linkage of Arabinose and Ribose through Collision-Induced Dissociation.
    Tsai ST; Nguan HS; Ni CK
    J Phys Chem A; 2021 Jul; 125(28):6109-6121. PubMed ID: 34256570
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Liew CY; Chan CK; Huang SP; Cheng YT; Tsai ST; Hsu HC; Wang CC; Ni CK
    Analyst; 2021 Nov; 146(23):7345-7357. PubMed ID: 34766961
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic Full Glycan Structural Determination through Logically Derived Sequence Tandem Mass Spectrometry.
    Tsai ST; Liew CY; Hsu C; Huang SP; Weng WC; Kuo YH; Ni CK
    Chembiochem; 2019 Sep; 20(18):2351-2359. PubMed ID: 31016827
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Logically derived sequence tandem mass spectrometry for structural determination of Galactose oligosaccharides.
    Huang SP; Hsu HC; Liew CY; Tsai ST; Ni CK
    Glycoconj J; 2021 Apr; 38(2):177-189. PubMed ID: 32062823
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discrimination of β-1,4- and β-1,3-Linkages in Native Oligosaccharides via Charge Transfer Dissociation Mass Spectrometry.
    Buck-Wiese H; Fanuel M; Liebeke M; Le Mai Hoang K; Pardo-Vargas A; Seeberger PH; Hehemann JH; Rogniaux H; Jackson GP; Ropartz D
    J Am Soc Mass Spectrom; 2020 Jun; 31(6):1249-1259. PubMed ID: 32309938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective chemical oxidation and depolymerization of switchgrass [corrected] (Panicum virgatum L.) xylan with [corrected] oligosaccharide product analysis by mass spectrometry.
    Bowman MJ; Dien BS; O'Bryan PJ; Sarath G; Cotta MA
    Rapid Commun Mass Spectrom; 2011 Apr; 25(7):941-50. PubMed ID: 21416531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Liquid Chromatography-Tandem Mass Spectrometry Approach for Determining Glycosidic Linkages.
    Galermo AG; Nandita E; Barboza M; Amicucci MJ; Vo TT; Lebrilla CB
    Anal Chem; 2018 Nov; 90(21):13073-13080. PubMed ID: 30299929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. De novo structural determination of mannose oligosaccharides by using a logically derived sequence for tandem mass spectrometry.
    Hsu HC; Huang SP; Liew CY; Tsai ST; Ni CK
    Anal Bioanal Chem; 2019 Jun; 411(15):3241-3255. PubMed ID: 31020368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The identification of furanose and pyranose ring forms of the reducing units of oligosaccharides.
    Pazur JH; Miskiel FJ; Liu B
    Anal Biochem; 1988 Oct; 174(1):46-53. PubMed ID: 3218746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monosaccharide identification as a first step toward de novo carbohydrate sequencing: mass spectrometry strategy for the identification and differentiation of diastereomeric and enantiomeric pentose isomers.
    Nagy G; Pohl NL
    Anal Chem; 2015 Apr; 87(8):4566-71. PubMed ID: 25826671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The collision-induced dissociation mechanism of sodiated Hex-HexNAc disaccharides.
    Nguan HS; Tsai ST; Liew CY; Reddy NS; Hung SC; Ni CK
    Phys Chem Chem Phys; 2023 Aug; 25(33):22179-22194. PubMed ID: 37565323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The structures of arabinoxyloglucans produced by solanaceous plants.
    York WS; Kumar Kolli VS; Orlando R; Albersheim P; Darvill AG
    Carbohydr Res; 1996 May; 285():99-128. PubMed ID: 9011379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an Extensive Linkage Library for Characterization of Carbohydrates.
    Galermo AG; Nandita E; Castillo JJ; Amicucci MJ; Lebrilla CB
    Anal Chem; 2019 Oct; 91(20):13022-13031. PubMed ID: 31525948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of protein glycosylation by mass spectrometry.
    Nilsson B
    Mol Biotechnol; 1994 Dec; 2(3):243-80. PubMed ID: 7866880
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Multidimensional Mass Spectrometry-Based Workflow for
    Castillo JJ; Galermo AG; Amicucci MJ; Nandita E; Couture G; Bacalzo N; Chen Y; Lebrilla CB
    J Am Soc Mass Spectrom; 2021 Aug; 32(8):2175-2185. PubMed ID: 34261322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pentose metabolism and conversion to biofuels and high-value chemicals in yeasts.
    Ruchala J; Sibirny AA
    FEMS Microbiol Rev; 2021 Aug; 45(4):. PubMed ID: 33316044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of plant oligosaccharides by matrix-assisted laser desorption/ionization and electrospray mass spectrometry.
    Matamoros Fernández LE; Obel N; Scheller HV; Roepstorff P
    J Mass Spectrom; 2003 Apr; 38(4):427-37. PubMed ID: 12717755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of monosaccharide composition of water-soluble polysaccharides from Codium fragile by ultra-performance liquid chromatography-tandem mass spectrometry.
    Li P; Yan Z; Chen Y; He P; Yang W
    J Sep Sci; 2021 Apr; 44(7):1452-1460. PubMed ID: 33533562
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural characterization of underivatized arabino-xylo-oligosaccharides by negative-ion electrospray mass spectrometry.
    Quéméner B; Ordaz-Ortiz JJ; Saulnier L
    Carbohydr Res; 2006 Aug; 341(11):1834-47. PubMed ID: 16730680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.