These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 36930142)
41. Modeling the Catalytic Cycle of Glutathione Peroxidase by Nuclear Magnetic Resonance Spectroscopic Analysis of Selenocysteine Selenenic Acids. Masuda R; Kimura R; Karasaki T; Sase S; Goto K J Am Chem Soc; 2021 May; 143(17):6345-6350. PubMed ID: 33887135 [TBL] [Abstract][Full Text] [Related]
42. Biomimetic studies on selenoenzymes: modeling the role of proximal histidines in thioredoxin reductases. Sarma BK; Mugesh G Inorg Chem; 2006 Jul; 45(14):5307-14. PubMed ID: 16813393 [TBL] [Abstract][Full Text] [Related]
43. Activity profile of glutathione-dependent enzymes and respiratory chain complexes in rats supplemented with antioxidants and treated with carcinogens. Desai VG; Casciano D; Feuers RJ; Aidoo A Arch Biochem Biophys; 2001 Oct; 394(2):255-64. PubMed ID: 11594740 [TBL] [Abstract][Full Text] [Related]
44. Synthesis and structure-activity correlation studies of secondary- and tertiary-amine-based glutathione peroxidase mimics. Bhabak KP; Mugesh G Chemistry; 2009 Sep; 15(38):9846-54. PubMed ID: 19551790 [TBL] [Abstract][Full Text] [Related]
45. Anti-thyroid drugs and thyroid hormone synthesis: effect of methimazole derivatives on peroxidase-catalyzed reactions. Roy G; Mugesh G J Am Chem Soc; 2005 Nov; 127(43):15207-17. PubMed ID: 16248663 [TBL] [Abstract][Full Text] [Related]
46. Reactivity of Selenocystine and Tellurocystine: Structure and Antioxidant Activity of the Derivatives. Satheeshkumar K; Raju S; Singh HB; Butcher RJ Chemistry; 2018 Nov; 24(66):17513-17522. PubMed ID: 30225936 [TBL] [Abstract][Full Text] [Related]
47. Reduction of diphenyl diselenide and analogs by mammalian thioredoxin reductase is independent of their gluthathione peroxidase-like activity: a possible novel pathway for their antioxidant activity. Sausen de Freitas A; de Souza Prestes A; Wagner C; Haigert Sudati J; Alves D; Oliveira Porciúncula L; Kade IJ; Teixeira Rocha JB Molecules; 2010 Oct; 15(11):7699-714. PubMed ID: 21030914 [TBL] [Abstract][Full Text] [Related]
48. Antioxidant activity of selenenamide-based mimic as a function of the aromatic thiols nucleophilicity, a DFT-SAPE model. Kheirabadi R; Izadyar M Comput Biol Chem; 2018 Aug; 75():213-221. PubMed ID: 29803966 [TBL] [Abstract][Full Text] [Related]
49. Molecular structure of substituted phenylamine alpha-OMe- and alpha-OH-p-benzoquinone derivatives. Synthesis and correlation of spectroscopic, electrochemical, and theoretical parameters. Aguilar-Martínez M; Bautista-Martínez JA; Macías-Ruvalcaba N; González I; Tovar E; Marín del Alizal T; Collera O; Cuevas G J Org Chem; 2001 Dec; 66(25):8349-63. PubMed ID: 11735513 [TBL] [Abstract][Full Text] [Related]
50. Inhibition of lactoperoxidase-catalyzed oxidation by imidazole-based thiones and selones: a mechanistic study. Roy G; Jayaram PN; Mugesh G Chem Asian J; 2013 Aug; 8(8):1910-21. PubMed ID: 23737077 [TBL] [Abstract][Full Text] [Related]
51. Role of the Chalcogen (S, Se, Te) in the Oxidation Mechanism of the Glutathione Peroxidase Active Site. Bortoli M; Torsello M; Bickelhaupt FM; Orian L Chemphyschem; 2017 Nov; 18(21):2990-2998. PubMed ID: 28837255 [TBL] [Abstract][Full Text] [Related]
52. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions. Rice DB; Massie AA; Jackson TA Acc Chem Res; 2017 Nov; 50(11):2706-2717. PubMed ID: 29064667 [TBL] [Abstract][Full Text] [Related]
53. Selenocysteine oxidation in glutathione peroxidase catalysis: an MS-supported quantum mechanics study. Orian L; Mauri P; Roveri A; Toppo S; Benazzi L; Bosello-Travain V; De Palma A; Maiorino M; Miotto G; Zaccarin M; Polimeno A; Flohé L; Ursini F Free Radic Biol Med; 2015 Oct; 87():1-14. PubMed ID: 26163004 [TBL] [Abstract][Full Text] [Related]
54. Proton Transfer and S Dalla Tiezza M; Bickelhaupt FM; Flohé L; Orian L Chempluschem; 2021 Apr; 86(4):525-532. PubMed ID: 33215863 [TBL] [Abstract][Full Text] [Related]
57. The role of selenium peroxidases in the protection against oxidative damage of membranes. Ursini F; Bindoli A Chem Phys Lipids; 1987; 44(2-4):255-76. PubMed ID: 3311419 [TBL] [Abstract][Full Text] [Related]
58. A bis-cyclodextrin diselenide with glutathione peroxidase-like activity. Liu J; Luo G; Ren X; Mu Y; Bai Y; Shen J Biochim Biophys Acta; 2000 Sep; 1481(2):222-8. PubMed ID: 11018712 [TBL] [Abstract][Full Text] [Related]
59. Reactions of copper(II)-phenol systems with O2: models for TPQ biosynthesis in copper amine oxidases. Tabuchi K; Ertem MZ; Sugimoto H; Kunishita A; Tano T; Fujieda N; Cramer CJ; Itoh S Inorg Chem; 2011 Mar; 50(5):1633-47. PubMed ID: 21284380 [TBL] [Abstract][Full Text] [Related]
60. Crystal structures, spectroscopic and theoretical study of novel Schiff bases of 2-(methylthiomethyl)anilines. Olalekan TE; Adejoro IA; VanBrecht B; Watkins GM Spectrochim Acta A Mol Biomol Spectrosc; 2015 Mar; 139():385-95. PubMed ID: 25576935 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]