These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36930400)

  • 1. CRISPR/Cas9-assisted ssDNA recombineering for site-directed mutagenesis and saturation mutagenesis of plasmid-encoded genes.
    Zhang G; Wang J; Li Y; Shang G
    Biotechnol Lett; 2023 Jun; 45(5-6):629-637. PubMed ID: 36930400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations.
    Li J; Sun J; Gao X; Wu Z; Shang G
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3559-3570. PubMed ID: 30879090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing.
    Wu Z; Chen Z; Gao X; Li J; Shang G
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2783-2795. PubMed ID: 30762073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid and Error-Free Site-Directed Mutagenesis by a PCR-Free In Vitro CRISPR/Cas9-Mediated Mutagenic System.
    She W; Ni J; Shui K; Wang F; He R; Xue J; Reetz MT; Li A; Ma L
    ACS Synth Biol; 2018 Sep; 7(9):2236-2244. PubMed ID: 30075075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri.
    Oh JH; van Pijkeren JP
    Nucleic Acids Res; 2014; 42(17):e131. PubMed ID: 25074379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-Directed Mutagenesis Method Mediated by Cas9.
    Chen W; She W; Li A; Zhai C; Ma L
    Methods Mol Biol; 2022; 2461():165-174. PubMed ID: 35727450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple site-directed mutagenesis via simple cloning by prolonged overlap extension.
    Hejlesen R; Füchtbauer EM
    Biotechniques; 2020 Jun; 68(6):345-348. PubMed ID: 32372650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recombineering in Non-Model Bacteria.
    Corts A; Thomason LC; Costantino N; Court DL
    Curr Protoc; 2022 Dec; 2(12):e605. PubMed ID: 36546891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient and Precise Genome Editing in
    Corts AD; Thomason LC; Gill RT; Gralnick JA
    ACS Synth Biol; 2019 Aug; 8(8):1877-1889. PubMed ID: 31277550
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR-Directed Gene Editing Catalyzes Precise Gene Segment Replacement
    Sansbury BM; Wagner AM; Tarcic G; Barth S; Nitzan E; Goldfus R; Vidne M; Kmiec EB
    CRISPR J; 2019 Apr; 2():121-132. PubMed ID: 30998096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9-Assisted Seamless Genome Editing in Lactobacillus plantarum and Its Application in
    Zhou D; Jiang Z; Pang Q; Zhu Y; Wang Q; Qi Q
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444197
    [No Abstract]   [Full Text] [Related]  

  • 12. CRISPR-Cpf1 assisted genome editing of Corynebacterium glutamicum.
    Jiang Y; Qian F; Yang J; Liu Y; Dong F; Xu C; Sun B; Chen B; Xu X; Li Y; Wang R; Yang S
    Nat Commun; 2017 May; 8():15179. PubMed ID: 28469274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generating Single Nucleotide Point Mutations in E. coli with the No-SCAR System.
    Ellington AJ; Reisch CR
    Methods Mol Biol; 2022; 2479():119-133. PubMed ID: 35583736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced integration of large DNA into E. coli chromosome by CRISPR/Cas9.
    Chung ME; Yeh IH; Sung LY; Wu MY; Chao YP; Ng IS; Hu YC
    Biotechnol Bioeng; 2017 Jan; 114(1):172-183. PubMed ID: 27454445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
    Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T
    Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome Editing with CRISPR-Cas9 in Lactobacillus plantarum Revealed That Editing Outcomes Can Vary Across Strains and Between Methods.
    Leenay RT; Vento JM; Shah M; Martino ME; Leulier F; Beisel CL
    Biotechnol J; 2019 Mar; 14(3):e1700583. PubMed ID: 30156038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Genome Editing Using In Vivo Synthesized Donor ssDNA in
    Hao M; Wang Z; Qiao H; Yin P; Qiao J; Qi H
    Cells; 2020 Feb; 9(2):. PubMed ID: 32085579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A double-locus scarless genome editing system in Escherichia coli.
    Liu H; Hou G; Wang P; Guo G; Wang Y; Yang N; Rehman MNU; Li C; Li Q; Zheng J; Zeng J; Li S
    Biotechnol Lett; 2020 Aug; 42(8):1457-1465. PubMed ID: 32130564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Scarless Cas9 Assisted Recombineering (no-SCAR) in Escherichia coli, an Easy-to-Use System for Genome Editing.
    Reisch CR; Prather KLJ
    Curr Protoc Mol Biol; 2017 Jan; 117():31.8.1-31.8.20. PubMed ID: 28060411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insertional Mutagenesis by CRISPR/Cas9 Ribonucleoprotein Gene Editing in Cells Targeted for Point Mutation Repair Directed by Short Single-Stranded DNA Oligonucleotides.
    Rivera-Torres N; Banas K; Bialk P; Bloh KM; Kmiec EB
    PLoS One; 2017; 12(1):e0169350. PubMed ID: 28052104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.