These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 36930599)

  • 61. Voltage-dependent ionic conductances of type I spiral ganglion cells from the guinea pig inner ear.
    Santos-Sacchi J
    J Neurosci; 1993 Aug; 13(8):3599-611. PubMed ID: 8393487
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Ion conductances related to development of repetitive firing in mouse retinal ganglion neurons in situ.
    Rothe T; Jüttner R; Bähring R; Grantyn R
    J Neurobiol; 1999 Feb; 38(2):191-206. PubMed ID: 10022566
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Casein kinase 2 determines the voltage dependence of the Kv3.1 channel in auditory neurons and transfected cells.
    Macica CM; Kaczmarek LK
    J Neurosci; 2001 Feb; 21(4):1160-8. PubMed ID: 11160386
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons.
    Raman IM; Bean BP
    J Neurosci; 1999 Mar; 19(5):1663-74. PubMed ID: 10024353
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Stimulus-dependent auditory tuning results in synchronous population coding of vocalizations in the songbird midbrain.
    Woolley SM; Gill PR; Theunissen FE
    J Neurosci; 2006 Mar; 26(9):2499-512. PubMed ID: 16510728
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Dopamine modulates two potassium currents and inhibits the intrinsic firing properties of an identified motor neuron in a central pattern generator network.
    Kloppenburg P; Levini RM; Harris-Warrick RM
    J Neurophysiol; 1999 Jan; 81(1):29-38. PubMed ID: 9914264
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Species-Specific Adaptation for Ongoing High-Frequency Action Potential Generation in MNTB Neurons.
    Kladisios N; Wicke KD; Pätz-Warncke C; Felmy F
    J Neurosci; 2023 Apr; 43(15):2714-2729. PubMed ID: 36898837
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Development of a fast transient potassium current in chick cochlear ganglion neurons.
    García-Díaz JF
    Hear Res; 1999 Sep; 135(1-2):124-34. PubMed ID: 10491961
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Different mechanisms underlying the repolarization of narrow and wide action potentials in pyramidal cells and interneurons of cat motor cortex.
    Chen W; Zhang JJ; Hu GY; Wu CP
    Neuroscience; 1996 Jul; 73(1):57-68. PubMed ID: 8783229
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Distinct roles of CaMKII and PKA in regulation of firing patterns and K(+) currents in Drosophila neurons.
    Yao WD; Wu CF
    J Neurophysiol; 2001 Apr; 85(4):1384-94. PubMed ID: 11287463
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Effects of NALCN-Encoded Na
    Yang ND; Mellor RL; Hermanstyne TO; Nerbonne JM
    J Neurosci; 2023 Jul; 43(28):5132-5141. PubMed ID: 37339878
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Systematic variation of potassium current amplitudes across the tonotopic axis of the rat medial nucleus of the trapezoid body.
    Brew HM; Forsythe ID
    Hear Res; 2005 Aug; 206(1-2):116-32. PubMed ID: 16081003
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Enhancement of signal-to-noise ratio and phase locking for small inputs by a low-threshold outward current in auditory neurons.
    Svirskis G; Kotak V; Sanes DH; Rinzel J
    J Neurosci; 2002 Dec; 22(24):11019-25. PubMed ID: 12486197
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Tonotopic action potential tuning of maturing auditory neurons through endogenous ATP.
    Jovanovic S; Radulovic T; Coddou C; Dietz B; Nerlich J; Stojilkovic SS; Rübsamen R; Milenkovic I
    J Physiol; 2017 Feb; 595(4):1315-1337. PubMed ID: 28030754
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Auditory responsive cortex in the squirrel monkey: neural responses to amplitude-modulated sounds.
    Bieser A; Müller-Preuss P
    Exp Brain Res; 1996 Mar; 108(2):273-84. PubMed ID: 8815035
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Action potentials and chemosensitive conductances in the dendrites of olfactory neurons suggest new features for odor transduction.
    Dubin AE; Dionne VE
    J Gen Physiol; 1994 Feb; 103(2):181-201. PubMed ID: 8189204
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Auditory Thalamostriatal and Corticostriatal Pathways Convey Complementary Information about Sound Features.
    Ponvert ND; Jaramillo S
    J Neurosci; 2019 Jan; 39(2):271-280. PubMed ID: 30459227
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Purinergic signaling in cochlear supporting cells reduces hair cell excitability by increasing the extracellular space.
    Babola TA; Kersbergen CJ; Wang HC; Bergles DE
    Elife; 2020 Jan; 9():. PubMed ID: 31913121
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Ion channel mechanisms underlying frequency-firing patterns of the avian nucleus magnocellularis: A computational model.
    Lu T; Wade K; Hong H; Sanchez JT
    Channels (Austin); 2017 Sep; 11(5):444-458. PubMed ID: 28481659
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Factors controlling the input-output relationship of spherical bushy cells in the gerbil cochlear nucleus.
    Kuenzel T; Borst JG; van der Heijden M
    J Neurosci; 2011 Mar; 31(11):4260-73. PubMed ID: 21411667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.