BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 36930675)

  • 1. The prophage-encoded transcriptional regulator AppY has pleiotropic effects on E. coli physiology.
    Derdouri N; Ginet N; Denis Y; Ansaldi M; Battesti A
    PLoS Genet; 2023 Mar; 19(3):e1010672. PubMed ID: 36930675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryptic-Prophage-Encoded Small Protein DicB Protects
    Ragunathan PT; Vanderpool CK
    J Bacteriol; 2019 Dec; 201(23):. PubMed ID: 31527115
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control and benefits of CP4-57 prophage excision in Escherichia coli biofilms.
    Wang X; Kim Y; Wood TK
    ISME J; 2009 Oct; 3(10):1164-79. PubMed ID: 19458652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of Regulation of Cryptic Prophage-Encoded Gene Products in Escherichia coli.
    Ragunathan PT; Ng Kwan Lim E; Ma X; Massé E; Vanderpool CK
    J Bacteriol; 2023 Aug; 205(8):e0012923. PubMed ID: 37439671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cryptic prophages help bacteria cope with adverse environments.
    Wang X; Kim Y; Ma Q; Hong SH; Pokusaeva K; Sturino JM; Wood TK
    Nat Commun; 2010; 1():147. PubMed ID: 21266997
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Q-like transcription factor regulates biofilm development in Escherichia coli by controlling expression of the DLP12 lysis cassette.
    Rueggeberg KG; Toba FA; Thompson MG; Campbell BR; Hay AG
    Microbiology (Reading); 2013 Apr; 159(Pt 4):691-700. PubMed ID: 23378572
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lethal perturbation of an Escherichia coli regulatory network is triggered by a restriction-modification system's regulator and can be mitigated by excision of the cryptic prophage Rac.
    Gucwa K; Wons E; Wisniewska A; Jakalski M; Dubiak Z; Kozlowski LP; Mruk I
    Nucleic Acids Res; 2024 Apr; 52(6):2942-2960. PubMed ID: 38153127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptional regulators of the GAD acid stress island are carried by effector protein-encoding prophages and indirectly control type III secretion in enterohemorrhagic Escherichia coli O157:H7.
    Tree JJ; Roe AJ; Flockhart A; McAteer SP; Xu X; Shaw D; Mahajan A; Beatson SA; Best A; Lotz S; Woodward MJ; La Ragione R; Murphy KC; Leong JM; Gally DL
    Mol Microbiol; 2011 Jun; 80(5):1349-65. PubMed ID: 21492263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of Antimicrobial Resistance and Virulence Genes within the Prophage-Associated Regions in Nosocomial Pathogens.
    Kondo K; Kawano M; Sugai M
    mSphere; 2021 Aug; 6(4):e0045221. PubMed ID: 34232073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The defective prophage pool of Escherichia coli O157: prophage-prophage interactions potentiate horizontal transfer of virulence determinants.
    Asadulghani M; Ogura Y; Ooka T; Itoh T; Sawaguchi A; Iguchi A; Nakayama K; Hayashi T
    PLoS Pathog; 2009 May; 5(5):e1000408. PubMed ID: 19412337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The lysis cassette of DLP12 defective prophage is regulated by RpoE.
    Rueggeberg KG; Toba FA; Bird JG; Franck N; Thompson MG; Hay AG
    Microbiology (Reading); 2015 Aug; 161(8):1683-1693. PubMed ID: 25998262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The
    Yamanaka Y; Aizawa SI; Yamamoto K
    J Bacteriol; 2022 Jan; 204(1):e0042021. PubMed ID: 34694904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The CI repressors of Shiga toxin-converting prophages are involved in coinfection of Escherichia coli strains, which causes a down regulation in the production of Shiga toxin 2.
    Serra-Moreno R; Jofre J; Muniesa M
    J Bacteriol; 2008 Jul; 190(13):4722-35. PubMed ID: 18469095
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide transcriptome and proteome analysis of Escherichia coli expressing IrrE, a global regulator of Deinococcus radiodurans.
    Zhou Z; Zhang W; Chen M; Pan J; Lu W; Ping S; Yan Y; Hou X; Yuan M; Zhan Y; Lin M
    Mol Biosyst; 2011 May; 7(5):1613-20. PubMed ID: 21380435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of the lambdoid prophage element e14 in the E. coli K-12 genome.
    Mehta P; Casjens S; Krishnaswamy S
    BMC Microbiol; 2004 Jan; 4():4. PubMed ID: 14733619
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of prophages on bacterial chromosomes.
    Canchaya C; Fournous G; Brüssow H
    Mol Microbiol; 2004 Jul; 53(1):9-18. PubMed ID: 15225299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular prophage typing of avian pathogenic Escherichia coli.
    Kwon HJ; Seong WJ; Kim JH
    Vet Microbiol; 2013 Mar; 162(2-4):785-792. PubMed ID: 23102989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription termination controls prophage maintenance in Escherichia coli genomes.
    Menouni R; Champ S; Espinosa L; Boudvillain M; Ansaldi M
    Proc Natl Acad Sci U S A; 2013 Aug; 110(35):14414-9. PubMed ID: 23940369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fitness benefits to bacteria of carrying prophages and prophage-encoded antibiotic-resistance genes peak in different environments.
    Wendling CC; Refardt D; Hall AR
    Evolution; 2021 Feb; 75(2):515-528. PubMed ID: 33347602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research progress of prophages.
    Chen X; Wei Y; Ji X
    Yi Chuan; 2021 Mar; 43(3):240-248. PubMed ID: 33724208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.