BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36930828)

  • 1. Electrochemical Preparation of Crystalline Hydrous Iridium Oxide and Its Use in Oxygen Evolution Catalysis.
    Qi J; Zeng H; Gu L; Liu Z; Zeng Y; Hong E; Lai Y; Liu T; Yang C
    ACS Appl Mater Interfaces; 2023 Mar; 15(12):15269-15278. PubMed ID: 36930828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrous cobalt-iridium oxide two-dimensional nanoframes: insights into activity and stability of bimetallic acidic oxygen evolution electrocatalysts.
    Ying Y; Godínez Salomón JF; Lartundo-Rojas L; Moreno A; Meyer R; Damin CA; Rhodes CP
    Nanoscale Adv; 2021 Apr; 3(7):1976-1996. PubMed ID: 36133093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural impacts on the degradation behaviors of Ir-based electrocatalysts during water oxidation in acid.
    Li M; Qi J; Zeng H; Chen J; Liu Z; Gu L; Wang J; Zhang Y; Wang M; Zhang Y; Lu X; Yang C
    J Colloid Interface Sci; 2024 Jun; 674():108-117. PubMed ID: 38917711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activated chemical bonds in nanoporous and amorphous iridium oxides favor low overpotential for oxygen evolution reaction.
    Lee S; Lee YJ; Lee G; Soon A
    Nat Commun; 2022 Jun; 13(1):3171. PubMed ID: 35676247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving Active and Stable Amorphous Ir
    Ma CL; Yang XR; Wang ZQ; Sun W; Zhu L; Cao LM; Gong XQ; Yang J
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28706-28715. PubMed ID: 35695736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In Situ Activation Endows Orthorhombic Fluorite-Type Samarium Iridium Oxide with Enhanced Acidic Water Oxidation.
    Wang Y; Li Z; Hou L; Wang Y; Zhang L; Wang T; Liu H; Liu S; Qin Q; Liu X
    ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36892547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing Edge Active Sites via Intrinsic In-Plane Iridium Deficiency in Layered Iridium Oxides for Oxygen Evolution Electrocatalysis.
    Wang L; Du R; Liang X; Zou Y; Zhao X; Chen H; Zou X
    Adv Mater; 2024 Apr; 36(16):e2312608. PubMed ID: 38195802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microwave-Assisted Synthesis of Stable and Highly Active Ir Oxohydroxides for Electrochemical Oxidation of Water.
    Massué C; Huang X; Tarasov A; Ranjan C; Cap S; Schlögl R
    ChemSusChem; 2017 May; 10(9):1958-1968. PubMed ID: 28164470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Catalyst-Support Effects and Their Stabilizing Role for IrOx Nanoparticle Catalysts during the Oxygen Evolution Reaction.
    Oh HS; Nong HN; Reier T; Bergmann A; Gliech M; Ferreira de Araújo J; Willinger E; Schlögl R; Teschner D; Strasser P
    J Am Chem Soc; 2016 Sep; 138(38):12552-63. PubMed ID: 27549910
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanistic Study of IrO
    Zagalskaya A; Alexandrov V
    J Phys Chem Lett; 2020 Apr; 11(7):2695-2700. PubMed ID: 32188249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lattice Oxygen Exchange in Rutile IrO
    Schweinar K; Gault B; Mouton I; Kasian O
    J Phys Chem Lett; 2020 Jul; 11(13):5008-5014. PubMed ID: 32496784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the role of microkinetic network structure in the interplay between oxygen evolution reaction and catalyst dissolution.
    Dam AP; Papakonstantinou G; Sundmacher K
    Sci Rep; 2020 Aug; 10(1):14140. PubMed ID: 32839461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions.
    Lee Y; Suntivich J; May KJ; Perry EE; Shao-Horn Y
    J Phys Chem Lett; 2012 Feb; 3(3):399-404. PubMed ID: 26285858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lanthanides Regulated the Amorphization-Crystallization of IrO
    Ma C; Sun W; Qamar Zaman W; Zhou Z; Zhang H; Shen Q; Cao L; Yang J
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):34980-34989. PubMed ID: 32658446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterostructuring Mesoporous 2D Iridium Nanosheets with Amorphous Nickel Boron Oxide Layers to Improve Electrolytic Water Splitting.
    Kang Y; Jiang B; Malgras V; Guo Y; Cretu O; Kimoto K; Ashok A; Wan Z; Li H; Sugahara Y; Yamauchi Y; Asahi T
    Small Methods; 2021 Oct; 5(10):e2100679. PubMed ID: 34927951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction.
    Seitz LC; Dickens CF; Nishio K; Hikita Y; Montoya J; Doyle A; Kirk C; Vojvodic A; Hwang HY; Norskov JK; Jaramillo TF
    Science; 2016 Sep; 353(6303):1011-1014. PubMed ID: 27701108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembly of a Highly Active Iridium-Based Oxide Oxygen Evolution Reaction Catalyst by Using Metal-Organic Framework Self-Dissolution.
    Sun W; Tian X; Liao J; Deng H; Ma C; Ge C; Yang J; Huang W
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29414-29423. PubMed ID: 32496754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Performance Supported Iridium Oxohydroxide Water Oxidation Electrocatalysts.
    Massué C; Pfeifer V; Huang X; Noack J; Tarasov A; Cap S; Schlögl R
    ChemSusChem; 2017 May; 10(9):1943-1957. PubMed ID: 28164475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the Active-Layer Structures for Acidic Oxygen Evolution from 9R-BaIrO
    Li N; Cai L; Wang C; Lin Y; Huang J; Sheng H; Pan H; Zhang W; Ji Q; Duan H; Hu W; Zhang W; Hu F; Tan H; Sun Z; Song B; Jin S; Yan W
    J Am Chem Soc; 2021 Nov; 143(43):18001-18009. PubMed ID: 34694127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhenium Suppresses Iridium (IV) Oxide Crystallization and Enables Efficient, Stable Electrochemical Water Oxidation.
    Huo W; Zhou X; Jin Y; Xie C; Yang S; Qian J; Cai D; Ge Y; Qu Y; Nie H; Yang Z
    Small; 2023 May; 19(19):e2207847. PubMed ID: 36772894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.