These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 36931017)
21. Review of Temporal Reasoning in the Clinical Domain for Timeline Extraction: Where we are and where we need to be. Olex AL; McInnes BT J Biomed Inform; 2021 Jun; 118():103784. PubMed ID: 33862232 [TBL] [Abstract][Full Text] [Related]
22. MLM-based typographical error correction of unstructured medical texts for named entity recognition. Lee EB; Heo GE; Choi CM; Song M BMC Bioinformatics; 2022 Nov; 23(1):486. PubMed ID: 36384464 [TBL] [Abstract][Full Text] [Related]
23. Task definition, annotated dataset, and supervised natural language processing models for symptom extraction from unstructured clinical notes. Steinkamp JM; Bala W; Sharma A; Kantrowitz JJ J Biomed Inform; 2020 Feb; 102():103354. PubMed ID: 31838210 [TBL] [Abstract][Full Text] [Related]
24. LATTE: A knowledge-based method to normalize various expressions of laboratory test results in free text of Chinese electronic health records. Jiang K; Yang T; Wu C; Chen L; Mao L; Wu Y; Deng L; Jiang T J Biomed Inform; 2020 Feb; 102():103372. PubMed ID: 31901507 [TBL] [Abstract][Full Text] [Related]
25. Data governance and Gensini score automatic calculation for coronary angiography with deep-learning-based natural language extraction. Li F; Jiang M; Xu H; Chen Y; Chen F; Nie W; Wang L Math Biosci Eng; 2024 Feb; 21(3):4085-4103. PubMed ID: 38549319 [TBL] [Abstract][Full Text] [Related]
26. TEMPTING system: a hybrid method of rule and machine learning for temporal relation extraction in patient discharge summaries. Chang YC; Dai HJ; Wu JC; Chen JM; Tsai RT; Hsu WL J Biomed Inform; 2013 Dec; 46 Suppl():S54-S62. PubMed ID: 24060600 [TBL] [Abstract][Full Text] [Related]
27. Data-Driven Information Extraction from Chinese Electronic Medical Records. Xu D; Zhang M; Zhao T; Ge C; Gao W; Wei J; Zhu KQ PLoS One; 2015; 10(8):e0136270. PubMed ID: 26295801 [TBL] [Abstract][Full Text] [Related]
28. Minimalistic Approach to Coreference Resolution in Lithuanian Medical Records. Žitkus V; Butkienė R; Butleris R; Maskeliūnas R; Damaševičius R; Woźniak M Comput Math Methods Med; 2019; 2019():9079840. PubMed ID: 31015858 [TBL] [Abstract][Full Text] [Related]
29. De-identifying free text of Japanese electronic health records. Kajiyama K; Horiguchi H; Okumura T; Morita M; Kano Y J Biomed Semantics; 2020 Sep; 11(1):11. PubMed ID: 32958039 [TBL] [Abstract][Full Text] [Related]
30. Extraction of Temporal Information from Clinical Narratives. Moharasan G; Ho TB J Healthc Inform Res; 2019 Jun; 3(2):220-244. PubMed ID: 35415423 [TBL] [Abstract][Full Text] [Related]
31. Designing an openEHR-Based Pipeline for Extracting and Standardizing Unstructured Clinical Data Using Natural Language Processing. Wulff A; Mast M; Hassler M; Montag S; Marschollek M; Jack T Methods Inf Med; 2020 Dec; 59(S 02):e64-e78. PubMed ID: 33058101 [TBL] [Abstract][Full Text] [Related]
32. Detection and categorization of bacteria habitats using shallow linguistic analysis. Karadeniz İ; Özgür A BMC Bioinformatics; 2015; 16 Suppl 10(Suppl 10):S5. PubMed ID: 26201262 [TBL] [Abstract][Full Text] [Related]
33. Reconstructing the patient's natural history from electronic health records. Najafabadipour M; Zanin M; Rodríguez-González A; Torrente M; Nuñez García B; Cruz Bermudez JL; Provencio M; Menasalvas E Artif Intell Med; 2020 May; 105():101860. PubMed ID: 32505419 [TBL] [Abstract][Full Text] [Related]
34. Automated Learning of Temporal Expressions. Redd D; Shaoa Y; Yang J; Divita G; Zeng-Treitler Q Stud Health Technol Inform; 2015; 216():639-42. PubMed ID: 26262129 [TBL] [Abstract][Full Text] [Related]
35. Challenges in clinical natural language processing for automated disorder normalization. Leaman R; Khare R; Lu Z J Biomed Inform; 2015 Oct; 57():28-37. PubMed ID: 26187250 [TBL] [Abstract][Full Text] [Related]
36. Towards generating a patient's timeline: extracting temporal relationships from clinical notes. Nikfarjam A; Emadzadeh E; Gonzalez G J Biomed Inform; 2013 Dec; 46 Suppl(0):S40-S47. PubMed ID: 24212118 [TBL] [Abstract][Full Text] [Related]
37. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas. Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557 [TBL] [Abstract][Full Text] [Related]
38. A machine learning based approach to identify protected health information in Chinese clinical text. Du L; Xia C; Deng Z; Lu G; Xia S; Ma J Int J Med Inform; 2018 Aug; 116():24-32. PubMed ID: 29887232 [TBL] [Abstract][Full Text] [Related]
39. Multimodal learning for temporal relation extraction in clinical texts. Knez T; Žitnik S J Am Med Inform Assoc; 2024 May; 31(6):1380-1387. PubMed ID: 38531680 [TBL] [Abstract][Full Text] [Related]
40. Clinical Named Entity Recognition From Chinese Electronic Health Records via Machine Learning Methods. Zhang Y; Wang X; Hou Z; Li J JMIR Med Inform; 2018 Dec; 6(4):e50. PubMed ID: 30559093 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]