BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 36931041)

  • 1. Thyroid Cytopathology Cancer Diagnosis from Smartphone Images Using Machine Learning.
    Assaad S; Dov D; Davis R; Kovalsky S; Lee WT; Kahmke R; Rocke D; Cohen J; Henao R; Carin L; Range DE
    Mod Pathol; 2023 Jun; 36(6):100129. PubMed ID: 36931041
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of a machine learning algorithm to predict malignancy in thyroid cytopathology.
    Elliott Range DD; Dov D; Kovalsky SZ; Henao R; Carin L; Cohen J
    Cancer Cytopathol; 2020 Apr; 128(4):287-295. PubMed ID: 32012493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Gene Expression Profile Prediction for Uveal Melanoma from Digital Cytopathology Images via Deep Learning and Salient Image Region Identification.
    Liu TYA; Chen H; Gomez C; Correa ZM; Unberath M
    Ophthalmol Sci; 2023 Mar; 3(1):100240. PubMed ID: 36561353
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining molecular testing and the Bethesda category III:VI ratio for thyroid fine-needle aspirates: A quality-assurance metric for evaluating diagnostic performance in a cytopathology laboratory.
    Gokozan HN; Dilcher TL; Alperstein SA; Qiu Y; Mostyka M; Scognamiglio T; Solomon JP; Song W; Rennert H; Beg S; Stern E; Goyal A; Siddiqui MT; Heymann JJ
    Cancer Cytopathol; 2022 Apr; 130(4):259-274. PubMed ID: 34962713
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer.
    Ehteshami Bejnordi B; Veta M; Johannes van Diest P; van Ginneken B; Karssemeijer N; Litjens G; van der Laak JAWM; ; Hermsen M; Manson QF; Balkenhol M; Geessink O; Stathonikos N; van Dijk MC; Bult P; Beca F; Beck AH; Wang D; Khosla A; Gargeya R; Irshad H; Zhong A; Dou Q; Li Q; Chen H; Lin HJ; Heng PA; Haß C; Bruni E; Wong Q; Halici U; Öner MÜ; Cetin-Atalay R; Berseth M; Khvatkov V; Vylegzhanin A; Kraus O; Shaban M; Rajpoot N; Awan R; Sirinukunwattana K; Qaiser T; Tsang YW; Tellez D; Annuscheit J; Hufnagl P; Valkonen M; Kartasalo K; Latonen L; Ruusuvuori P; Liimatainen K; Albarqouni S; Mungal B; George A; Demirci S; Navab N; Watanabe S; Seno S; Takenaka Y; Matsuda H; Ahmady Phoulady H; Kovalev V; Kalinovsky A; Liauchuk V; Bueno G; Fernandez-Carrobles MM; Serrano I; Deniz O; Racoceanu D; Venâncio R
    JAMA; 2017 Dec; 318(22):2199-2210. PubMed ID: 29234806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. US of thyroid nodules: can AI-assisted diagnostic system compete with fine needle aspiration?
    Zhou T; Xu L; Shi J; Zhang Y; Lin X; Wang Y; Hu T; Xu R; Xie L; Sun L; Li D; Zhang W; Chen C; Wang W; Xu C; Kong F; Xun Y; Yu L; Zhang S; Ding J; Wu F; Tang T; Zhan S; Zhang J; Wu G; Zheng H; Kong D; Luo D
    Eur Radiol; 2024 Feb; 34(2):1324-1333. PubMed ID: 37615763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bethesda Categorization of Thyroid Nodule Cytology and Prediction of Thyroid Cancer Type and Prognosis.
    Liu X; Medici M; Kwong N; Angell TE; Marqusee E; Kim MI; Larsen PR; Cho NL; Nehs MA; Ruan DT; Gawande A; Moore F; Barletta J; Krane JF; Cibas ES; Yang T; Alexander EK
    Thyroid; 2016 Feb; 26(2):256-61. PubMed ID: 26563459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of Machine Learning-Based Software for the Screening of Thyroid Cytopathology Whole Slide Images.
    Dov D; Kovalsky SZ; Feng Q; Assaad S; Cohen J; Bell J; Henao R; Carin L; Range DE
    Arch Pathol Lab Med; 2022 Jul; 146(7):872-878. PubMed ID: 34669924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of glass slides and various digital-slide modalities for cytopathology screening and interpretation.
    Hanna MG; Monaco SE; Cuda J; Xing J; Ahmed I; Pantanowitz L
    Cancer Cytopathol; 2017 Sep; 125(9):701-709. PubMed ID: 28558124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Comparative Analysis of Two Machine Learning-Based Diagnostic Patterns with Thyroid Imaging Reporting and Data System for Thyroid Nodules: Diagnostic Performance and Unnecessary Biopsy Rate.
    Zhao CK; Ren TT; Yin YF; Shi H; Wang HX; Zhou BY; Wang XR; Li X; Zhang YF; Liu C; Xu HX
    Thyroid; 2021 Mar; 31(3):470-481. PubMed ID: 32781915
    [No Abstract]   [Full Text] [Related]  

  • 11. Deep-Learning-Based Screening and Ancillary Testing for Thyroid Cytopathology.
    Dov D; Elliott Range D; Cohen J; Bell J; Rocke DJ; Kahmke RR; Weiss-Meilik A; Lee WT; Henao R; Carin L; Kovalsky SZ
    Am J Pathol; 2023 Sep; 193(9):1185-1194. PubMed ID: 37611969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning to assist composition classification and thyroid solid nodule diagnosis: a multicenter diagnostic study.
    Chen C; Jiang Y; Yao J; Lai M; Liu Y; Jiang X; Ou D; Feng B; Zhou L; Xu J; Wu L; Zhou Y; Yue W; Dong F; Xu D
    Eur Radiol; 2024 Apr; 34(4):2323-2333. PubMed ID: 37819276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Screening of Cervical Cancers for Low-Resource Settings: Pilot Study of Smartphone-Based Endoscopic Visual Inspection After Acetic Acid Using Machine Learning Techniques.
    Bae JK; Roh HJ; You JS; Kim K; Ahn Y; Askaruly S; Park K; Yang H; Jang GJ; Moon KH; Jung W
    JMIR Mhealth Uhealth; 2020 Mar; 8(3):e16467. PubMed ID: 32159521
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning Model to Classify and Monitor Idiopathic Scoliosis in Adolescents Using a Single Smartphone Photograph.
    Zhang T; Zhu C; Zhao Y; Zhao M; Wang Z; Song R; Meng N; Sial A; Diwan A; Liu J; Cheung JPY
    JAMA Netw Open; 2023 Aug; 6(8):e2330617. PubMed ID: 37610748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial Intelligence Role in Subclassifying Cytology of Thyroid Follicular Neoplasm.
    Alabrak MMA; Megahed M; Alkhouly AA; Mohammed A; Elfandy H; Tahoun N; Ismail HA
    Asian Pac J Cancer Prev; 2023 Apr; 24(4):1379-1387. PubMed ID: 37116162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP): Implications for the risk of malignancy (ROM) in the Bethesda System for Reporting Thyroid Cytopathology (TBSRTC).
    Zhou H; Baloch ZW; Nayar R; Bizzarro T; Fadda G; Adhikari-Guragain D; Hatem J; Larocca LM; Samolczyk J; Slade J; Rossi ED
    Cancer Cytopathol; 2018 Jan; 126(1):20-26. PubMed ID: 28941185
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [On-site fine-needle aspiration cytology of thyroid nodules. Quality assurance of the Bethesda System for Reporting Thyroid Cytopathology (2008)].
    Bak M; Péter I; Nyári T; Simon P; Újlaky M; Boér A; Kásler M
    Orv Hetil; 2015 Oct; 156(41):1661-6. PubMed ID: 26551169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Telecytology: Is it possible with smartphone images?
    Sahin D; Hacisalihoglu UP; Kirimlioglu SH
    Diagn Cytopathol; 2018 Jan; 46(1):40-46. PubMed ID: 29115040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of the bethesda system for reporting thyroid cytopathology and similar precursor thyroid cytopathology reporting schemes.
    Wong LQ; Baloch ZW
    Adv Anat Pathol; 2012 Sep; 19(5):313-9. PubMed ID: 22885380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A single institution experience with the new bethesda system for reporting thyroid cytopathology: correlation with existing cytologic, clinical, and histological data.
    McElroy MK; Mahooti S; Hasteh F
    Diagn Cytopathol; 2014 Jul; 42(7):564-9. PubMed ID: 24431292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.