BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36931176)

  • 1. Emergence of multiple set-points of cellular homeostatic tension.
    Ueda Y; Deguchi S
    J Biomech; 2023 Apr; 151():111543. PubMed ID: 36931176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric response emerges between creation and disintegration of force-bearing subcellular structures as revealed by percolation analysis.
    Ueda Y; Matsunaga D; Deguchi S
    Integr Biol (Camb); 2024 Jan; 16():. PubMed ID: 38900169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A statistical mechanics model for determining the length distribution of actin filaments under cellular tensional homeostasis.
    Ueda Y; Matsunaga D; Deguchi S
    Sci Rep; 2022 Aug; 12(1):14466. PubMed ID: 36002503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estimation of the mechanical connection between apical stress fibers and the nucleus in vascular smooth muscle cells cultured on a substrate.
    Nagayama K; Yamazaki S; Yahiro Y; Matsumoto T
    J Biomech; 2014 Apr; 47(6):1422-9. PubMed ID: 24548337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Actin stress fibers are at a tipping point between conventional shortening and rapid disassembly at physiological levels of MgATP.
    Matsui TS; Ito K; Kaunas R; Sato M; Deguchi S
    Biochem Biophys Res Commun; 2010 May; 395(3):301-6. PubMed ID: 20353757
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Helical structure of actin stress fibers and its possible contribution to inducing their direction-selective disassembly upon cell shortening.
    Okamoto T; Matsui TS; Ohishi T; Deguchi S
    Biomech Model Mechanobiol; 2020 Apr; 19(2):543-555. PubMed ID: 31549258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanosensitive myosin II but not cofilin primarily contributes to cyclic cell stretch-induced selective disassembly of actin stress fibers.
    Huang W; Matsui TS; Saito T; Kuragano M; Takahashi M; Kawahara T; Sato M; Deguchi S
    Am J Physiol Cell Physiol; 2021 Jun; 320(6):C1153-C1163. PubMed ID: 33881935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intracellular stress transmission through actin stress fiber network in adherent vascular cells.
    Deguchi S; Ohashi T; Sato M
    Mol Cell Biomech; 2005 Dec; 2(4):205-16. PubMed ID: 16705866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells.
    Deguchi S; Ohashi T; Sato M
    J Biomech; 2006; 39(14):2603-10. PubMed ID: 16216252
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarized light retardation analysis allows for the evaluation of tension in individual stress fibers.
    Sugita S; Hozaki M; Matsui TS; Nagayama K; Deguchi S; Nakamura M
    Biochem Biophys Res Commun; 2022 Sep; 620():49-55. PubMed ID: 35777134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanosensing in actin stress fibers revealed by a close correlation between force and protein localization.
    Colombelli J; Besser A; Kress H; Reynaud EG; Girard P; Caussinus E; Haselmann U; Small JV; Schwarz US; Stelzer EH
    J Cell Sci; 2009 May; 122(Pt 10):1665-79. PubMed ID: 19401336
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Filamin A mediates isotropic distribution of applied force across the actin network.
    Kumar A; Shutova MS; Tanaka K; Iwamoto DV; Calderwood DA; Svitkina TM; Schwartz MA
    J Cell Biol; 2019 Aug; 218(8):2481-2491. PubMed ID: 31315944
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel method for measuring tension generated in stress fibers by applying external forces.
    Sugita S; Adachi T; Ueki Y; Sato M
    Biophys J; 2011 Jul; 101(1):53-60. PubMed ID: 21723814
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical properties of actin stress fibers in living cells.
    Lu L; Oswald SJ; Ngu H; Yin FC
    Biophys J; 2008 Dec; 95(12):6060-71. PubMed ID: 18820238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Buckling of actin stress fibers: a new wrinkle in the cytoskeletal tapestry.
    Costa KD; Hucker WJ; Yin FC
    Cell Motil Cytoskeleton; 2002 Aug; 52(4):266-74. PubMed ID: 12112140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of single stress fiber stiffness in cultured aortic smooth muscle cells under relaxed and contracted states: Its relation to dynamic rearrangement of stress fibers.
    Nagayama K; Matsumoto T
    J Biomech; 2010 May; 43(8):1443-9. PubMed ID: 20189183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. What factors determine the number of nonmuscle myosin II in the sarcomeric unit of stress fibers?
    Saito T; Huang W; Matsui TS; Kuragano M; Takahashi M; Deguchi S
    Biomech Model Mechanobiol; 2021 Feb; 20(1):155-166. PubMed ID: 32776260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous contraction and buckling of stress fibers in individual cells.
    Deguchi S; Matsui TS; Sato M
    J Cell Biochem; 2012 Mar; 113(3):824-32. PubMed ID: 22021050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tensional homeostasis at different length scales.
    Stamenović D; Smith ML
    Soft Matter; 2020 Aug; 16(30):6946-6963. PubMed ID: 32696799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical model for F-actin remodeling in vascular smooth muscle cells subjected to cyclic stretch.
    Na S; Meininger GA; Humphrey JD
    J Theor Biol; 2007 May; 246(1):87-99. PubMed ID: 17240401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.