These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36931183)

  • 1. Feature selection for driving style and skill clustering using naturalistic driving data and driving behavior questionnaire.
    Chen Y; Wang K; Lu JJ
    Accid Anal Prev; 2023 Jun; 185():107022. PubMed ID: 36931183
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Driving style recognition and comparisons among driving tasks based on driver behavior in the online car-hailing industry.
    Ma Y; Li W; Tang K; Zhang Z; Chen S
    Accid Anal Prev; 2021 May; 154():106096. PubMed ID: 33770720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal analysis of driving efficiency using smartphone data.
    Tselentis DI; Vlahogianni EI; Yannis G
    Accid Anal Prev; 2021 May; 154():106081. PubMed ID: 33714844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drivers trust, acceptance, and takeover behaviors in fully automated vehicles: Effects of automated driving styles and driver's driving styles.
    Ma Z; Zhang Y
    Accid Anal Prev; 2021 Sep; 159():106238. PubMed ID: 34182321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Analysis of Classification and Spatiotemporal Distribution Characteristics of Ride-Hailing Driver's Driving Style: A Case Study in China.
    Liu R; Yu H; Ren Y; Liu S
    Int J Environ Res Public Health; 2022 Aug; 19(15):. PubMed ID: 35955090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revision of the driver behavior questionnaire for Chinese drivers' aberrant driving behaviors using naturalistic driving data.
    Jiao Y; Wang X; Hurwitz D; Hu G; Xu X; Zhao X
    Accid Anal Prev; 2023 Jul; 187():107065. PubMed ID: 37167077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aggressive driving behavior prediction considering driver's intention based on multivariate-temporal feature data.
    Xu W; Wang J; Fu T; Gong H; Sobhani A
    Accid Anal Prev; 2022 Jan; 164():106477. PubMed ID: 34813934
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can vehicle longitudinal jerk be used to identify aggressive drivers? An examination using naturalistic driving data.
    Feng F; Bao S; Sayer JR; Flannagan C; Manser M; Wunderlich R
    Accid Anal Prev; 2017 Jul; 104():125-136. PubMed ID: 28499141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulator Pre-Screening of Underprepared Drivers Prior to Licensing On-Road Examination: Clustering of Virtual Driving Test Time Series Data.
    Grethlein D; Winston FK; Walshe E; Tanner S; Kandadai V; Ontañón S
    J Med Internet Res; 2020 Jun; 22(6):e13995. PubMed ID: 32554384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Driving style indicator using UDRIVE NDS data.
    Guyonvarch L; Hermitte T; Duvivier F; Val C; Guillaume A
    Traffic Inj Prev; 2018 Feb; 19(sup1):S189-S191. PubMed ID: 29584478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Driving risk assessment based on naturalistic driving study and driver attitude questionnaire analysis.
    Wang J; Huang H; Li Y; Zhou H; Liu J; Xu Q
    Accid Anal Prev; 2020 Sep; 145():105680. PubMed ID: 32707185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of driver engagement in secondary tasks from observed naturalistic driving behavior.
    Ye M; Osman OA; Ishak S; Hashemi B
    Accid Anal Prev; 2017 Sep; 106():385-391. PubMed ID: 28719829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Driver Behavior Profiling and Recognition Using Deep-Learning Methods: In Accordance with Traffic Regulations and Experts Guidelines.
    Al-Hussein WA; Por LY; Kiah MLM; Zaidan BB
    Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying visual road environment to establish a speeding prediction model: An examination using naturalistic driving data.
    Yu B; Chen Y; Bao S
    Accid Anal Prev; 2019 Aug; 129():289-298. PubMed ID: 31177040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Driver Behavior During Overtaking Maneuvers from the 100-Car Naturalistic Driving Study.
    Chen R; Kusano KD; Gabler HC
    Traffic Inj Prev; 2015; 16 Suppl 2():S176-81. PubMed ID: 26436229
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Real-Time Recognition System of Driving Propensity Based on AutoNavi Navigation Data.
    Wang X; Chen L; Shi H; Han J; Wang G; Wang Q; Zhong F; Li H
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying vehicle control from physiology in type 1 diabetes.
    Chakraborty P; Merickel J; Shah V; Sharma A; Hegde C; Desouza C; Drincic A; Gunaratne P; Rizzo M
    Traffic Inj Prev; 2019; 20(sup2):S26-S31. PubMed ID: 31617757
    [No Abstract]   [Full Text] [Related]  

  • 18. Assessing safety critical driving patterns of heavy passenger vehicle drivers using instrumented vehicle data - An unsupervised approach.
    Yarlagadda J; Jain P; Pawar DS
    Accid Anal Prev; 2021 Dec; 163():106464. PubMed ID: 34735888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and screening of key traffic violations: based on the perspective of expressing driver's accident risk.
    Zhang R; Shuai B; Huang W; Zhang S
    Int J Inj Contr Saf Promot; 2024 Mar; 31(1):12-29. PubMed ID: 37585709
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of factors influencing aggressive driver behavior and crash involvement.
    Adavikottu A; Velaga NR
    Traffic Inj Prev; 2021; 22(sup1):S21-S26. PubMed ID: 34491872
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.