These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36931264)

  • 41. Novel tracer method to measure isotopic labeled gas-phase nitrous acid (HO15NO) in biogeochemical studies.
    Wu D; Kampf CJ; Pöschl U; Oswald R; Cui J; Ermel M; Hu C; Trebs I; Sörgel M
    Environ Sci Technol; 2014 Jul; 48(14):8021-7. PubMed ID: 24954648
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Nitrous acid production and uptake by Zea mays plants in growth chambers in the presence of nitrogen dioxide.
    Marion A; Morin J; Ormeño E; Dupouyet S; D'Anna B; Boiry S; Wortham H
    Sci Total Environ; 2022 Feb; 806(Pt 2):150696. PubMed ID: 34597576
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Comprehensive Model Test of the HONO Sources Constrained to Field Measurements at Rural North China Plain.
    Liu Y; Lu K; Li X; Dong H; Tan Z; Wang H; Zou Q; Wu Y; Zeng L; Hu M; Min KE; Kecorius S; Wiedensohler A; Zhang Y
    Environ Sci Technol; 2019 Apr; 53(7):3517-3525. PubMed ID: 30811937
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Observation-Based Diagnostics of Reactive Nitrogen Recycling through HONO Heterogenous Production: Divergent Implications for Ozone Production and Emission Control.
    Chong K; Wang Y; Zheng M; Qu H; Zhang R; Lee YR; Ji Y; Huey LG; Fang H; Song W; Fang Z; Liu C; Gao Y; Tang J; Wang X
    Environ Sci Technol; 2024 Jul; 58(26):11554-11567. PubMed ID: 38885439
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Combustion Processes as a Source of High Levels of Indoor Hydroxyl Radicals through the Photolysis of Nitrous Acid.
    Bartolomei V; Gomez Alvarez E; Wittmer J; Tlili S; Strekowski R; Temime-Roussel B; Quivet E; Wortham H; Zetzsch C; Kleffmann J; Gligorovski S
    Environ Sci Technol; 2015 Jun; 49(11):6599-607. PubMed ID: 25942056
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Impact of soil-atmosphere HONO exchange on concentrations of HONO and O
    Ran H; An J; Zhang J; Huang J; Qu Y; Chen Y; Xue C; Mu Y; Liu X
    Sci Total Environ; 2024 Jun; 928():172336. PubMed ID: 38614350
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Accurately Predicting Spatiotemporal Variations of Near-Surface Nitrous Acid (HONO) Based on a Deep Learning Approach.
    Li X; Ye C; Lu K; Xue C; Li X; Zhang Y
    Environ Sci Technol; 2024 Jul; 58(29):13035-13046. PubMed ID: 38982681
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparative observation of atmospheric nitrous acid (HONO) in Xi'an and Xianyang located in the GuanZhong basin of western China.
    Li W; Tong S; Cao J; Su H; Zhang W; Wang L; Jia C; Zhang X; Wang Z; Chen M; Ge M
    Environ Pollut; 2021 Nov; 289():117679. PubMed ID: 34243056
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Observation of atmospheric nitrous acid with DOAS in Beijing, China.
    Qin M; Xie PH; Liu WQ; Li A; Dou K; Fang W; Liu JG; Zhang WJ
    J Environ Sci (China); 2006; 18(1):69-75. PubMed ID: 20050551
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Vertical distributions of atmospheric HONO and the corresponding OH radical production by photolysis at the suburb area of Shanghai, China.
    He S; Wang S; Zhang S; Zhu J; Sun Z; Xue R; Zhou B
    Sci Total Environ; 2023 Feb; 858(Pt 1):159703. PubMed ID: 36306851
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reactive uptake of NO
    Romanias MN; Ren Y; Grosselin B; Daële V; Mellouki A; Dagsson-Waldhauserova P; Thevenet F
    J Environ Sci (China); 2020 Sep; 95():155-164. PubMed ID: 32653175
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Interference from HONO in the measurement of ambient air NO
    Gingerysty NJ; Odame-Ankrah CA; Jordan N; Osthoff HD
    J Environ Sci (China); 2021 Sep; 107():184-193. PubMed ID: 34412781
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comprehensive Study about the Photolysis of Nitrates on Mineral Oxides.
    Ma Q; Zhong C; Ma J; Ye C; Zhao Y; Liu Y; Zhang P; Chen T; Liu C; Chu B; He H
    Environ Sci Technol; 2021 Jul; 55(13):8604-8612. PubMed ID: 34132529
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Soil HONO emissions at high moisture content are driven by microbial nitrate reduction to nitrite: tackling the HONO puzzle.
    Wu D; Horn MA; Behrendt T; Müller S; Li J; Cole JA; Xie B; Ju X; Li G; Ermel M; Oswald R; Fröhlich-Nowoisky J; Hoor P; Hu C; Liu M; Andreae MO; Pöschl U; Cheng Y; Su H; Trebs I; Weber B; Sörgel M
    ISME J; 2019 Jul; 13(7):1688-1699. PubMed ID: 30833686
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Speciation and chemical evolution of nitrogen oxides in aircraft exhaust near airports.
    Wood EC; Herndon SC; Timko MT; Yelvington PE; Miake-Lye RC
    Environ Sci Technol; 2008 Mar; 42(6):1884-91. PubMed ID: 18409608
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High Gaseous Nitrous Acid (HONO) Emissions from Light-Duty Diesel Vehicles.
    Liao S; Zhang J; Yu F; Zhu M; Liu J; Ou J; Dong H; Sha Q; Zhong Z; Xie Y; Luo H; Zhang L; Zheng J
    Environ Sci Technol; 2021 Jan; 55(1):200-208. PubMed ID: 33290056
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Direct Formation of Electronic Excited NO
    Jiang H; Bao F; Wang J; Chen J; Zhu Y; Huang D; Chen C; Zhao J
    Environ Sci Technol; 2023 Aug; 57(30):11144-11151. PubMed ID: 37462617
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transformations, lifetimes, and sources of NO2, HONO, and HNO3 in indoor environments.
    Spicer CW; Kenny DV; Ward GF; Billick IH
    Air Waste; 1993 Nov; 43(11):1479-85. PubMed ID: 8260141
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nitrous acid formation on Zea mays leaves by heterogeneous reaction of nitrogen dioxide in the laboratory.
    Marion A; Morin J; Gandolfo A; Ormeño E; D'Anna B; Wortham H
    Environ Res; 2021 Feb; 193():110543. PubMed ID: 33253704
    [TBL] [Abstract][Full Text] [Related]  

  • 60. HONO Emissions from Western U.S. Wildfires Provide Dominant Radical Source in Fresh Wildfire Smoke.
    Peng Q; Palm BB; Melander KE; Lee BH; Hall SR; Ullmann K; Campos T; Weinheimer AJ; Apel EC; Hornbrook RS; Hills AJ; Montzka DD; Flocke F; Hu L; Permar W; Wielgasz C; Lindaas J; Pollack IB; Fischer EV; Bertram TH; Thornton JA
    Environ Sci Technol; 2020 May; 54(10):5954-5963. PubMed ID: 32294377
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.