These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
524 related articles for article (PubMed ID: 36931420)
1. A self-assembled dynamic extracellular matrix-like hydrogel system with multi-scale structures for cell bioengineering applications. Xu Y; Rothe R; Voigt D; Sayed A; Huang C; Hauser S; Lee PW; Cui M; Sáenz JP; Boccaccini AR; Zheng K; Pietzsch J; Zhang Y Acta Biomater; 2023 May; 162():211-225. PubMed ID: 36931420 [TBL] [Abstract][Full Text] [Related]
2. Crosslinker structure modulates bulk mechanical properties and dictates hMSC behavior on hyaluronic acid hydrogels. Morton LD; Castilla-Casadiego DA; Palmer AC; Rosales AM Acta Biomater; 2023 Jan; 155():258-270. PubMed ID: 36423819 [TBL] [Abstract][Full Text] [Related]
3. Injectable self-assembling peptide nanofiber hydrogel as a bioactive 3D platform to promote chronic wound tissue regeneration. Lou P; Liu S; Wang Y; Pan C; Xu X; Zhao M; Liao G; Yang G; Yuan Y; Li L; Zhang J; Chen Y; Cheng J; Lu Y; Liu J Acta Biomater; 2021 Nov; 135():100-112. PubMed ID: 34389483 [TBL] [Abstract][Full Text] [Related]
4. Advances in bioactive glass-containing injectable hydrogel biomaterials for tissue regeneration. Zeimaran E; Pourshahrestani S; Fathi A; Razak NABA; Kadri NA; Sheikhi A; Baino F Acta Biomater; 2021 Dec; 136():1-36. PubMed ID: 34562661 [TBL] [Abstract][Full Text] [Related]
5. Hydrogel derived from porcine decellularized nerve tissue as a promising biomaterial for repairing peripheral nerve defects. Lin T; Liu S; Chen S; Qiu S; Rao Z; Liu J; Zhu S; Yan L; Mao H; Zhu Q; Quan D; Liu X Acta Biomater; 2018 Jun; 73():326-338. PubMed ID: 29649641 [TBL] [Abstract][Full Text] [Related]
6. Multicomponent hydrogels for the formation of vascularized bone-like constructs in vitro. Derkus B; Okesola BO; Barrett DW; D'Este M; Chowdhury TT; Eglin D; Mata A Acta Biomater; 2020 Jun; 109():82-94. PubMed ID: 32311533 [TBL] [Abstract][Full Text] [Related]
7. Self-assembled peptide amphiphile nanofibers and peg composite hydrogels as tunable ECM mimetic microenvironment. Goktas M; Cinar G; Orujalipoor I; Ide S; Tekinay AB; Guler MO Biomacromolecules; 2015 Apr; 16(4):1247-58. PubMed ID: 25751623 [TBL] [Abstract][Full Text] [Related]
8. A Self-Assembled Matrix System for Cell-Bioengineering Applications in Different Dimensions, Scales, and Geometries. Xu Y; Gaillez MP; Zheng K; Voigt D; Cui M; Kurth T; Xiao L; Rothe R; Hauser S; Lee PW; Wieduwild R; Lin W; Bornhäuser M; Pietzsch J; Boccaccini AR; Zhang Y Small; 2022 Apr; 18(13):e2104758. PubMed ID: 35132776 [TBL] [Abstract][Full Text] [Related]
9. Electrostatic Assembly of Multiarm PEG-Based Hydrogels as Extracellular Matrix Mimics: Cell Response in the Presence and Absence of RGD Cell Adhesive Ligands. Suwannakot P; Nemec S; Peres NG; Du EY; Kilian KA; Gaus K; Kavallaris M; Gooding JJ ACS Biomater Sci Eng; 2023 Mar; 9(3):1362-1376. PubMed ID: 36826383 [TBL] [Abstract][Full Text] [Related]
10. Double - network hydrogel based on exopolysaccharides as a biomimetic extracellular matrix to augment articular cartilage regeneration. Cai Z; Tang Y; Wei Y; Wang P; Zhang H Acta Biomater; 2022 Oct; 152():124-143. PubMed ID: 36055611 [TBL] [Abstract][Full Text] [Related]
12. Concentration-dependent rheological properties of ECM hydrogel for intracerebral delivery to a stroke cavity. Massensini AR; Ghuman H; Saldin LT; Medberry CJ; Keane TJ; Nicholls FJ; Velankar SS; Badylak SF; Modo M Acta Biomater; 2015 Nov; 27():116-130. PubMed ID: 26318805 [TBL] [Abstract][Full Text] [Related]
13. Effects of amyloid-β-mimicking peptide hydrogel matrix on neuronal progenitor cell phenotype. Mathes TG; Monirizad M; Ermis M; de Barros NR; Rodriguez M; Kraatz HB; Jucaud V; Khademhosseini A; Falcone N Acta Biomater; 2024 Jul; 183():89-100. PubMed ID: 38801867 [TBL] [Abstract][Full Text] [Related]
14. Cell-instructive starPEG-heparin-collagen composite matrices. Binner M; Bray LJ; Friedrichs J; Freudenberg U; Tsurkan MV; Werner C Acta Biomater; 2017 Apr; 53():70-80. PubMed ID: 28216298 [TBL] [Abstract][Full Text] [Related]
15. Interpenetrating Polymer Network HA/Alg-RGD Hydrogel: An Equilibrium of Macroscopic Stability and Microscopic Adaptability for 3D Cell Growth and Vascularization. Liu Y; Liu X; Zhang Y; Cao Y; Luo B; Wang Z; Pei R Biomacromolecules; 2023 Dec; 24(12):5977-5988. PubMed ID: 37939799 [TBL] [Abstract][Full Text] [Related]
16. Guest-Host Supramolecular Assembly of Injectable Hydrogel Nanofibers for Cell Encapsulation. Miller B; Hansrisuk A; Highley CB; Caliari SR ACS Biomater Sci Eng; 2021 Sep; 7(9):4164-4174. PubMed ID: 33891397 [TBL] [Abstract][Full Text] [Related]
17. Approaching the compressive modulus of articular cartilage with a decellularized cartilage-based hydrogel. Beck EC; Barragan M; Tadros MH; Gehrke SH; Detamore MS Acta Biomater; 2016 Jul; 38():94-105. PubMed ID: 27090590 [TBL] [Abstract][Full Text] [Related]
18. Harnessing multifunctional collagen mimetic peptides to create bioinspired stimuli responsive hydrogels for controlled cell culture. Ford EM; Hilderbrand AM; Kloxin AM J Mater Chem B; 2024 Oct; 12(38):9600-9621. PubMed ID: 39211975 [TBL] [Abstract][Full Text] [Related]
19. 3D Cell Culture in Interpenetrating Networks of Alginate and rBM Matrix. Wisdom K; Chaudhuri O Methods Mol Biol; 2017; 1612():29-37. PubMed ID: 28634933 [TBL] [Abstract][Full Text] [Related]