These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36931513)

  • 1. Grazing reduces plant sexual reproduction but increases asexual reproduction: A global meta-analysis.
    Wentao M; Shiming T; Le Q; Weibo R; Fry EL; De Long JR; Margerison RCP; Yuan C; Xiaomin L
    Sci Total Environ; 2023 Jun; 879():162850. PubMed ID: 36931513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grassland biodiversity and ecosystem functions benefit more from cattle than sheep in mixed grazing: A meta-analysis.
    Su J; Xu F; Zhang Y
    J Environ Manage; 2023 Jul; 337():117769. PubMed ID: 36958283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Effect of grazing on reproduction in Leymus chinensis population].
    Wang R
    Ying Yong Sheng Tai Xue Bao; 2000 Jun; 11(3):399-402. PubMed ID: 11767641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of plant diversity on species-specific herbivory: patterns and mechanisms.
    Bröcher M; Ebeling A; Hertzog L; Roscher C; Weisser W; Meyer ST
    Oecologia; 2023 Apr; 201(4):1053-1066. PubMed ID: 36964400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation.
    Linder HP; Lehmann CER; Archibald S; Osborne CP; Richardson DM
    Biol Rev Camb Philos Soc; 2018 May; 93(2):1125-1144. PubMed ID: 29230921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grassland structural heterogeneity in a savanna is driven more by productivity differences than by consumption differences between lawn and bunch grasses.
    Veldhuis MP; Fakkert HF; Berg MP; Olff H
    Oecologia; 2016 Nov; 182(3):841-53. PubMed ID: 27522607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Research advances on the effects of grazing on plant functional traits in grassland].
    Wang XF; Ma HB; Liu J; Miao HT; Shen Y; Zhou Y; Ma JL
    Ying Yong Sheng Tai Xue Bao; 2022 Feb; 33(2):569-576. PubMed ID: 35229532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grazing exclusion promotes grasses functional group dominance via increasing of bud banks in steppe community.
    Zhao LP; Wang D; Liang FH; Liu Y; Wu GL
    J Environ Manage; 2019 Dec; 251():109589. PubMed ID: 31546141
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Post-Soviet shifts in grazing and fire regimes changed the functional plant community composition on the Eurasian steppe.
    Freitag M; Kamp J; Dara A; Kuemmerle T; Sidorova TV; Stirnemann IA; Velbert F; Hölzel N
    Glob Chang Biol; 2021 Jan; 27(2):388-401. PubMed ID: 33085817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in plant phosphorus demand and supply relationships in response to different grazing intensities affect the soil organic carbon stock of a temperate steppe.
    Song L; Gong J; Zhang Z; Zhang W; Zhang S; Dong J; Dong X; Hu Y; Liu Y
    Sci Total Environ; 2023 Jun; 876():163225. PubMed ID: 37011672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing native, but not exotic, biodiversity increases aboveground productivity in ungrazed and intensely grazed grasslands.
    Isbell FI; Wilsey BJ
    Oecologia; 2011 Mar; 165(3):771-81. PubMed ID: 21161547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecosystem carbon and nitrogen accumulation after grazing exclusion in semiarid grassland.
    Qiu L; Wei X; Zhang X; Cheng J
    PLoS One; 2013; 8(1):e55433. PubMed ID: 23383191
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variation in grazing tolerance among three tallgrass prairie plant species.
    Damhoureyeh SA; Hartnett DC
    Am J Bot; 2002 Oct; 89(10):1634-43. PubMed ID: 21665591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bud production and dynamics of flowering and vegetative tillers in Andropogon gerardii (Poaceae): the role of developmental constraints.
    Ott JP; Hartnett DC
    Am J Bot; 2011 Aug; 98(8):1293-8. PubMed ID: 21788531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nutrient reallocation between stem and leaf drives grazed grassland degradation in inner Mongolia, China.
    Liu J; Lu S; Liu C; Hou D
    BMC Plant Biol; 2022 Oct; 22(1):505. PubMed ID: 36307761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of grazing on spatiotemporal variations in community structure and ecosystem function on the grasslands of Inner Mongolia, China.
    Su R; Cheng J; Chen D; Bai Y; Jin H; Chao L; Wang Z; Li J
    Sci Rep; 2017 Feb; 7(1):40. PubMed ID: 28232738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Density-dependent plant growth drives grazer stimulation of aboveground net primary production in Yellowstone grasslands.
    Penner JF; Frank DA
    Oecologia; 2021 Jul; 196(3):851-861. PubMed ID: 34117517
    [TBL] [Abstract][Full Text] [Related]  

  • 18. While shoot herbivores reduce, root herbivores increase nutrient enrichment's impact on diversity in a grassland model.
    Crawford MS; Schlägel UE; May F; Wurst S; Grimm V; Jeltsch F
    Ecology; 2021 May; 102(5):e03333. PubMed ID: 33710633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shifts in positive and negative plant interactions along a grazing intensity gradient.
    Graff P; Aguiar MR; Chaneton EJ
    Ecology; 2007 Jan; 88(1):188-99. PubMed ID: 17489467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scale-dependent effects of grazing on plant C: N: P stoichiometry and linkages to ecosystem functioning in the Inner Mongolia grassland.
    Zheng S; Ren H; Li W; Lan Z
    PLoS One; 2012; 7(12):e51750. PubMed ID: 23272158
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.